Channels with Memory Statistical Dependence

Prof Hans Georg Schaathun

Høgskolen i Ålesund

16th January 2014

Prof Hans Georg Schaathun

Channels with Memory

Independent and Dependent Events

• Statistical independent events A and B

•
$$P(A) = P(A|B) = P(A|\neg B)$$

•
$$P(B) = P(B|A) = P(B|\neg A)$$

Product rule — only for independent events

•
$$P(A) \cdot P(B) = P(A \wedge B)$$

- Bernoulli trials are independent
- A BSC(*p*) gives **r** = **x** + **e**
 - $e = (e_1, e_2, ..., e_n)$
- $P(e_i) = P(e_i | e_j)$ for any $j \neq i$

Observing an error in position i does not change the probability distribution on position j.

On a channel with memory the error probability at time t, depends on the occurrence of previous errors.

• Consider a distribution for $\mathbf{e} = (e_1, e_2, \dots, e_n)$

•
$$P(e_1 = 1) = 0.1, P(e_1 = 0) = 0.9$$

•
$$P(e_i = 0 | e_{i-1} = 0) = 0.1$$
, $P(e_i = 1 | e_{i-1} = 0) = 0.9$
• $P(e_i = 0 | e_{i-1} = 1) = 0.2$, $P(e_i = 1 | e_{i-1} = 1) = 0.8$

One bit memory. The channel remembers what happened one bit past.

Summary

- Statistical independence is crucial
 - independent events simplify many formulæ
 - enables rigourous analysis
- Dependent events give more alternatives
 - complex (often intractible) analysis
- Independent events are prerequisites for
 - the central limit theorem
 - the binomial distribution

Exercise

Implement a simulator generating random 10-bit error vectors with the probability distribution of the previous slide. Run a simulation and estimate the mean number of bit errors per 10-bit word. Run enough tests to get a 95% confidence interval smaller than \pm 0.3.

4 3 5 4 3