Channels with Memory Statistical Dependence

Prof Hans Georg Schaathun

Høgskolen i Ålesund

16th January 2014

Independent and Dependent Events

- Statistical independent events A and B
- $P(A)=P(A \mid B)=P(A \mid \neg B)$
- $P(B)=P(B \mid A)=P(B \mid \neg A)$
- Product rule - only for independent events
- $P(A) \cdot P(B)=P(A \wedge B)$

Bernoulli trials

- Bernoulli trials are independent
- $\operatorname{ABSC}(p)$ gives $\mathbf{r}=\mathbf{x}+\mathbf{e}$
- $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$
- $P\left(e_{i}\right)=P\left(e_{i} \mid e_{j}\right)$ for any $j \neq i$

Observing an error in position i does not change the probability distribution on position j.

A channel with memory

On a channel with memory the error probability at time t, depends on the occurrence of previous errors.

- Consider a distribution for $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$
- $P\left(e_{1}=1\right)=0.1, P\left(e_{1}=0\right)=0.9$
- For $i>1$,
- $P\left(e_{i}=0 \mid e_{i-1}=0\right)=0.1, P\left(e_{i}=1 \mid e_{i-1}=0\right)=0.9$
- $P\left(e_{i}=0 \mid e_{i-1}=1\right)=0.2, P\left(e_{i}=1 \mid e_{i-1}=1\right)=0.8$

One bit memory. The channel remembers what happened one bit past.

Summary

- Statistical independence is crucial
- independent events simplify many formulæ
- enables rigourous analysis
- Dependent events give more alternatives
- complex (often intractible) analysis
- Independent events are prerequisites for
- the central limit theorem
- the binomial distribution

Exercise

Implement a simulator generating random 10-bit error vectors with the probability distribution of the previous slide. Run a simulation and estimate the mean number of bit errors per 10-bit word. Run enough tests to get a 95\% confidence interval smaller than ± 0.3.

