The Distribution of the Error Rate

The Normal Distribution

Prof Hans Georg Schaathun

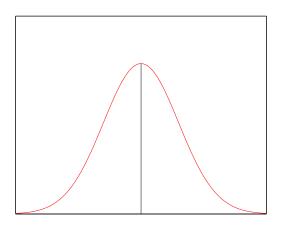
Høgskolen i Ålesund

8th January 2014

The Monte Carlo Experiment

- Objective: Estimate the error probability p_e
- Method: Test the system n times
 - Record the number of errors X
- Output: Point estimator $\hat{p}_e = X/n$

Probability Distribution

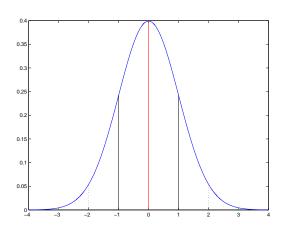


Central Limit Theorem

- The Binomial variable $X \sim B(n, p)$
 - is a sum $X = X_1 + X_2 + ... + X_n$
 - each $X_i \in \{0, 1\}$ is a Bernoulli trial with success probability p
- Central Limit Theorem
 - any sum $X = X_1 + X_2 + ... + X_n$
 - of identically distributed variables X_i
 - regardless of the exact distribution of X_i
 - as $n \to \infty$, X has always the same distribution
- This distribution, at the limit at infinity, is known as
 - the normal distribution, or
 - the Gaussian distribution

The Gauss Curve

The PDF of the standard normal distribution



$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$\mu = 0$$
$$\sigma = 1$$

Summary

- Let $X = X_1 + X_2 + \ldots + X_n$
 - sum of *n* identically distributed variables *X_i*
- When $n \to \infty$, $X \sim N(\mu, \sigma)$ X is normally distributed

Exercise

Find the following probabilities using either software (e.g. Matlab) or a z-table (e.g. in Frisvold and Moe):

- **1** $P(0 \le Z \le 1)$ when $Z \sim N(0, 1)$
- ② $P(0.5 \le Z \le 0.5)$ when $Z \sim N(0,1)$
- **3** $P(2 \le Z \le 5)$ when $Z \sim N(3,2)$

Note that a *z*-table only gives N(0,1). For other values of μ and σ , you need to transform the variable and consider $Z' = (Z - \mu)/\sigma$. See the textbook.