Confidence Intervals Error-Control Coding and the Binomial Distribution

Hans Georg Schaathun

Session 29 January 2015 Updated 20th January 2015

1 The Hamming Code

It is known that the [7, 4, 3] Hamming code decodes correctly if and only if there is zero or one bit error in the received (7-bit) word. Two or more bit errors gives decoding error.

Exercise 1 Calculate the error probability analytically for the [7, 4, 3] Hamming code used on BSC(0.1). Remember that the number of bit errors in the received 7-bit word (input to the decoder) is binomially distributed.

Exercise 2 Compare this error probability from Exercise 1 to your estimates in the previous session. Taking the standard error into account, are your estimates reasonable?

2 The Standard Error

Exercise 3 Calculate the standard error of the estimator \hat{p}_d exactly. You can use the exact (theoretical) value for the decoding error probability p_d from Exercise 1 and the formula from the previous session.

Exercise 4 Review your sample of 100 observations of the error rate for the Hamming code over BSC(0.1) in the previous session. How many times do you get

- 1. $\hat{p} ?$
- 2. $p S.E.(\hat{p}) < \hat{p} < p + S.E.(\hat{p})$?
- 3. $\hat{p} > p + S.E.(\hat{p})$?

3 The theoretical distribution

For large n the binomial distribution is approximately equal to the normal distribution, and hence $\hat{p} = X/n$ has normal distribution. This fact follows from the *Central Limit Theorem*. Unless p is very close to 0 or 1, n > 25 qualifies as large. For a normal distribution, we have

$$P(\hat{p}$$

$$P(p - S.E.(\hat{p}) < \hat{p} < p + S.E.(\hat{p})) = 0.683$$
(2)

$$P(\hat{p} > p + S.E.(\hat{p})) = 0.1587$$
 (3)

You can find these probabilities in a table for the standard normal distribution (or using cdf in Matlab).

Exercise 5 Review Exercise 4 where you counted three events:

1.
$$\hat{p} ?$$

2.
$$p - S.E.(\hat{p}) < \hat{p} < p + S.E.(\hat{p})$$
?

3.
$$\hat{p} > p + \mathsf{S}.\mathsf{E}.(\hat{p})$$
 ?

Use Equations (1)-(3) and find the expected number of occurrences of each of these events.

4 Confidence Interval

If we take Equations (1)-(3), use the estimated standard error in lieu of the exact value, and rearrange a little bit, we get

$$P(p > \hat{p} + \hat{S}.\hat{E}.(\hat{p})) = 0.1587$$
 (4)

$$P(\hat{p} - \hat{\mathsf{S}}.\hat{\mathsf{E}}.(\hat{p})
(5)$$

$$P(\hat{p} > p + S.E.(\hat{p})) = 0.1587P(p < \hat{p} - S.E.(\hat{p})) = 0.1587$$
(6)

(7)

The interval $(\hat{p} - \widehat{\mathsf{S.E.}}(\hat{p}), \hat{p} + \widehat{\mathsf{S.E.}}(\hat{p}))$ is called a 68.3% *confidence interval* for the decoding error probability p_d . The number 68.3% is called the *confidence level*.

Exercise 6 Using your simulation results with m = 100 tests, calculate a 68.3% confidence interval for the decoding error probability p_d when the [7,4,3] Hamming code is used on BSC(p).

Exercise 7 Redo Exercise 8 with m = 20 and m = 500. Compare the three confidence intervals. What do you see?

The confidence level of 68.3% is very low, and we usually want more confidence. A $\beta = 1 - 2\alpha$ confidence interval is given by

$$(\hat{p} - z_{\alpha}\widehat{\mathsf{S.E.}}(\hat{p}), \hat{p} + z_{\alpha}\widehat{\mathsf{S.E.}}(\hat{p}))$$

The constant z_{α} is found in a table of the standard normal distribution. The following values are useful to remember:

- 1. $z_{0.1586} = 1$ for the 68.3% confidence interval
- 2. $z_{0.025} = 1.96$ for the 95% confidence interval
- 3. $z_{0.023} = 2$ for the 95.4% confidence interval
- 4. $z_{0.001} = 3$ for the 99.8% confidence interval

Exercise 8 Using your simulation results with m = 100 tests, calculate a 95% confidence interval for the decoding error probability p_d when the [7, 4, 3] Hamming code is used on BSC(p).

5 One pitfall to avoid

Consider the following to statements:

- 1. When you are going to calculate a 95% confidence interval for p, the probability is 95% that you get an interval which encloses p.
- 2. When you have calculated a 95% confidence interval (l, u) for p, the probability is 95% that $l \ge p \ge u$.

Exercise 9 Compare the two statements above. Are they equivalent or not? Is the first statement true? Is the second statement true?