The Variance
 The Binomial Distribution

Prof Hans Georg Schaathun

Høgskolen i Ålesund

2nd January 2014

The Binomial Distribution

$$
P(T=t)=\binom{n}{t} p^{t}(1-p)^{n-t}
$$

Problem

What is the variance $\operatorname{var}(T)$ where the probability distribution of T is given above.

Toy case $N=1$

- Consider a single Bernoulli trial.
- $X \sim B(1, p)$
- $\mu=E(X)=p$
- What is the variance $\operatorname{var}(X)$
- $\operatorname{var}(X)=\sum_{x}(x-\mu)^{2} \cdot P(X=x)$

Outcome	X	$(\mu-X)^{2}$	Probability p^{\prime}	$p^{\prime} \cdot(\mu-X)^{2}$
Success	1	$(p-1)^{2}$	p	$p(p-1)^{2}$
Failure	0	p^{2}	$1-p$	$(1-p) p^{2}$
			Sum	$p(1-p)$

General case $N=$?

- Binomial distribution $Y \sim B(n, p)$
- $Y=X_{1}+X_{2}+\ldots+X_{n}$
- Each $X_{i} \sim B(1, p)$
- Independent X_{i}
- $\operatorname{var}(Y)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)=n \cdot \operatorname{var}(X)=n \cdot p(1-p)$

General case $N=$?

- Binomial distribution $Y \sim B(n, p)$
- $Y=X_{1}+X_{2}+\ldots+X_{n}$
- Each $X_{i} \sim B(1, p)$
- Independent X_{i}
- $\operatorname{var}(Y)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)=n \cdot \operatorname{var}(X)=n \cdot p(1-p)$

Summary

- Binomial distribution $X \sim B(n, p)$
- The expected value is $E(X)=n \cdot p$
- The expected value is $\operatorname{var}(X)=n \cdot p(1-p)$

Exercise

Let T be the number of bit errors when an n-bit word is transmitted over BSC with bit error probability p. What is the variance $\operatorname{var}(T)$ when
(1) $n=7$
(2) $n=1024$

