The Variance The Binomial Distribution

Prof Hans Georg Schaathun

Høgskolen i Ålesund

2nd January 2014

The Binomial Distribution

$$P(T=t) = \binom{n}{t} p^t (1-p)^{n-t}$$

Problem

What is the variance var(T) where the probability distribution of T is given above.

Toy case N = 1

• Consider a single Bernoulli trial.

•
$$X \sim B(1, p)$$

•
$$\mu = E(X) = p$$

What is the variance var(X)

•
$$\operatorname{var}(X) = \sum_{X} (X - \mu)^2 \cdot P(X = X)$$

Outcome	X	$(\mu - X)^2$	Probability p'	$p' \cdot (\mu - X)^2$
Success	1	$(p-1)^2$	р	$p(p-1)^2$
Failure	0	p^2	1 – <i>p</i>	$(1-p)p^2$
			Sum	p(1 - p)

General case N=?

- Binomial distribution $Y \sim B(n, p)$
- $Y = X_1 + X_2 + ... + X_n$
 - Each $X_i \sim B(1, p)$
 - Independent X_i

•
$$\operatorname{var}(Y) = \sum_{i=1}^{n} \operatorname{var}(X_i) = n \cdot \operatorname{var}(X) = n \cdot p(1-p)$$

General case N = ?

- Binomial distribution $Y \sim B(n, p)$
- $Y = X_1 + X_2 + ... + X_n$
 - Each $X_i \sim B(1, p)$
 - Independent X_i

• $\operatorname{var}(Y) = \sum_{i=1}^{n} \operatorname{var}(X_i) = n \cdot \operatorname{var}(X) = n \cdot p(1-p)$

Summary

- Binomial distribution $X \sim B(n, p)$
- The expected value is $E(X) = n \cdot p$
- The expected value is $var(X) = n \cdot p(1 p)$

Exercise

Let T be the number of bit errors when an n-bit word is transmitted over BSC with bit error probability p. What is the variance $\mathrm{var}(T)$ when

- n = 7
- n = 1024