Words on the Channel
 The error word

Prof Hans Georg Schaathun

Høgskolen i Ålesund

20th December 2013

The Word

- Long sequences of bits
- Split the sequence into blocks, or words
- Fixed-length words

Definition (Word)
An n-bit word is an n-dimensional vector, i.e. an element of \mathbb{Z}_{2}^{n}.

A word on the BSC

- Transmitted word \mathbf{x}
- Received word \mathbf{r}

$$
\begin{equation*}
\mathbf{r}=\mathbf{x} \oplus \mathbf{e} \tag{1}
\end{equation*}
$$

- Error word $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$
- $e_{i}=1$ with probability p (error)
- $e_{i}=0$ with probability $1-p$ (correct bit)

Hamming weight

- How many bit errors do we have in a word?
- Let t be the number of errors
- $t=w(\mathbf{e})$ is the number of one-bits in the error word

Definition (Hamming weight)
The Hamming weight $w(\mathbf{x})$ of a vector \mathbf{x} is the number of non-zero elements of \mathbf{x}.

Stochastic variables

- We had the channel formula
- $\mathbf{r}=\mathbf{x} \oplus \mathbf{e}$
- Considering the error as a stochastic variable, we should write
- $\mathbf{R}=\mathbf{x} \oplus \mathbf{E}$
- The number of errors is $T=w(\mathbf{E}), 0 \leq T \leq n$
- another stochastic variable
- What is the distribution of T ?

Closure

```
Problem
Let T be the number of bit errors when transmitting an n-bit word over a BSC with bit error probabilty p. Describe the probability distribution of \(T\).
```

- The answer to this problem is known as the binomial distribution.
- We will introduce it in the next video.

