# Words on the Channel

The error word

### Prof Hans Georg Schaathun

Høgskolen i Ålesund

20th December 2013



### The Word

- Long sequences of bits
- Split the sequence into blocks, or words
- Fixed-length words

### **Definition (Word)**

An *n*-bit word is an *n*-dimensional vector, i.e. an element of  $\mathbb{Z}_2^n$ .

### A word on the BSC

- Transmitted word x
- Received word r

$$\mathbf{r} = \mathbf{x} \oplus \mathbf{e}$$
 (1)

- Error word  $\mathbf{e} = (e_1, e_2, \dots, e_n)$ 
  - e<sub>i</sub> = 1 with probability p (error)
  - $e_i = 0$  with probability 1 p (correct bit)

## Hamming weight

- How many bit errors do we have in a word?
- Let t be the number of errors
- $t = w(\mathbf{e})$  is the number of one-bits in the error word

### Definition (Hamming weight)

The Hamming weight  $w(\mathbf{x})$  of a vector  $\mathbf{x}$  is the number of non-zero elements of  $\mathbf{x}$ .

### Stochastic variables

- We had the channel formula
  - $\mathbf{r} = \mathbf{x} \oplus \mathbf{e}$
- Considering the error as a stochastic variable, we should write
  - ullet  $\mathbf{R} = \mathbf{x} \oplus \mathbf{E}$
- The number of errors is  $T = w(\mathbf{E})$ ,  $0 \le T \le n$ 
  - another stochastic variable
- What is the distribution of T?

### Closure

#### **Problem**

Let T be the number of bit errors when transmitting an n-bit word over a BSC with bit error probabilty p.

Describe the probability distribution of T.

- The answer to this problem is known as the binomial distribution.
- We will introduce it in the next video.