The Central Limit Theorem

Probability Distributions of Estimators

Prof Hans Georg Schaathun

Høgskolen i Ålesund

7th February 2014

1/7

Sample Mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

2/7

Central Limit Theorem

- Sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - sum of independent variables
- Central Limit Theorem
 - any sum $X = X_1 + X_2 + ... + X_n$
 - of identically distributed independent variables X_i
 - regardless of the exact distribution of X_i
 - as $n \to \infty$, X has always the same distribution
- This distribution, at the limit at infinity, is known as
 - the normal distribution, or
 - the Gaussian distribution

The Gauss Curve

The standard normal distribution

Definition

The Standard Normal Distribution is the Normal Distribution with $\mu = 0$ and $\sigma = 1$.

- We customarily normalise variables to use the Standard Normal Distribution
- E.g. for probability tables.

The Gauss Curve

The PDF of the standard normal distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mu = 0$$

$$\sigma = 1$$

Summary

- Let $X = X_1 + X_2 + ... + X_n$
 - sum of n identically distributed variables X_i
- When $n \to \infty$, $X \sim N(\mu, \sigma)$ X is normally distributed

Exercise

Find the following probabilities using the <u>cdf()</u> function in <u>Matlab</u> (or some other method):

- **1** $P(Z \le -2)$ when $Z \sim N(0,1)$
- ② $P(Z \le -1)$ when $Z \sim N(0,1)$
- **3** $P(Z \ge 1)$ when $Z \sim N(0,1)$
- **1** $P(-1 \le Z \le 1)$ when $Z \sim N(0,1)$

