The Central Limit Theorem Probability Distributions of Estimators

Prof Hans Georg Schaathun

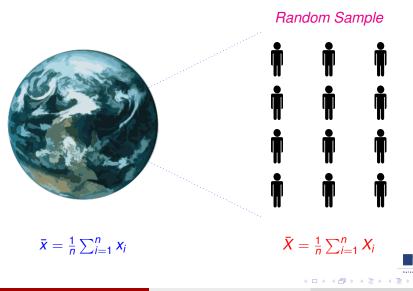
Høgskolen i Ålesund

10th February 2014

Prof Hans Georg Schaathun

The Central Limit Theorem

Sample Mean



Prof Hans Georg Schaathun

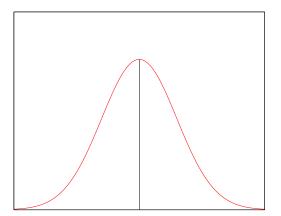
The Central Limit Theorem

10th February 2014 2 / 7

Central Limit Theorem

- Sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - sum of independent variables
- Central Limit Theorem
 - any sum $X = X_1 + X_2 + ... + X_n$
 - of identically distributed independent variables X_i
 - regardless of the exact distribution of X_i
 - as $n \to \infty$, X has always the same distribution
- This distribution, at the limit at infinity, is known as
 - the normal distribution, or
 - the Gaussian distribution

The Gauss Curve



$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

イロト イヨト イヨト イヨト

0

Prof Hans Georg Schaathun

The Central Limit Theorem

10th February 2014 4 / 7

The standard normal distribution

•
$$Y \sim N(\mu, \sigma)$$

• $Z = \frac{Y - \mu}{\sigma}$
• $Z \sim N(0, 1)$

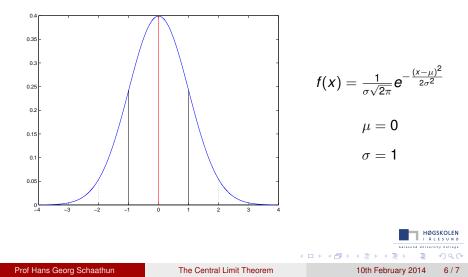
Definition

The Standard Normal Distribution is the Normal Distribution with $\mu = 0$ and $\sigma = 1$.

- We customarily normalise variables to use the Standard Normal Distribution
- E.g. for probability tables.

The Gauss Curve

The PDF of the standard normal distribution



Summary

• Let $X = X_1 + X_2 + \ldots + X_n$

sum of n identically distributed variables X_i

• When $n \rightarrow \infty$, $X \sim N(\mu, \sigma) - X$ is normally distributed

Exercise

Find the following probabilities using the cdf() function in Matlab (or some other method):

1
$$P(Z \le -2)$$
 when $Z \sim N(0, 1)$

2
$$P(Z \le -1)$$
 when $Z \sim N(0, 1)$

•
$$P(Z \ge 1)$$
 when $Z \sim N(0, 1)$

④
$$P(-1 \leq Z \leq 1)$$
 when $Z \sim N(0,1)$