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Sample Mean

X̄ = 1
n
∑n

i=1 Xix̄ = 1
n
∑n

i=1 xi

Random Sample
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Central Limit Theorem

Sample mean X̄ = 1
n
∑n

i=1 Xi
sum of independent variables

Central Limit Theorem
any sum X = X1 + X2 + . . .+ Xn
of identically distributed independent variables Xi
regardless of the exact distribution of Xi
as n→∞, X has always the same distribution

This distribution, at the limit at infinity, is known as
the normal distribution, or
the Gaussian distribution
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The Gauss Curve

f (x) = 1
σ
√

2π
e−

(x−µ)2

2σ2
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The standard normal distribution

1 Y ∼ N(µ, σ)

2 Z = Y−µ
σ

3 Z ∼ N(0,1)

Definition
The Standard Normal Distribution is the Normal Distribution with µ = 0
and σ = 1.

We customarily normalise variables to use the Standard Normal
Distribution
E.g. for probability tables.
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The Gauss Curve
The PDF of the standard normal distribution
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Summary

Let X = X1 + X2 + . . .+ Xn
sum of n identically distributed variables Xi

When n→∞, X ∼ N(µ, σ) — X is normally distributed

Exercise
Find the following probabilities using the cdf() function in Matlab (or
some other method):

1 P(Z ≤ −2) when Z ∼ N(0,1)

2 P(Z ≤ −1) when Z ∼ N(0,1)

3 P(Z ≥ 1) when Z ∼ N(0,1)

4 P(−1 ≤ Z ≤ 1) when Z ∼ N(0,1)
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