Calculating a Confidence Interval First Example

Prof Hans Georg Schaathun

Høgskolen i Ålesund

15th February 2014

Prof Hans Georg Schaathun

Calculating a Confidence Interval

- B

Exercise

You are interested in the average height of 6-year olds. In a class of 16 children you measure the following heights in centimeters:

109, 114, 115, 118, 119, 120, 121, 121, 121, 121, 122, 124, 124, 127, 128, 128, 131

Suppose you know that the standard deviation is $\sigma = 4$. Calculate a 95% confidence interval for the mean height.

Step 1: Sample Mean

The point estimator

109, 114, 115, 118, 119, 120, 121, 121, 121, 122, 124, 124, 127, 128, 128, 131

Prof Hans Georg Schaathun

Calculating a Confidence Interval

15th February 2014 3 / 6

The formula

$\bar{X} - z_{\alpha/2} \cdot \sigma / \sqrt{n} \le \mu \le \bar{X} + z_{\alpha/2} \cdot \sigma / \sqrt{n}$

Prof Hans Georg Schaathun

Calculating a Confidence Interval

15th February 2014 4 / 6

Step 2: Using a probability table From Frisvold and Moe

286 Tabeller

$F(z) = P(Z \le z)$, standardnormalfordelingen.

2	.00	01	.02	.03	04	.05	.06	.07	.08	.09
0.0	.5000	.4960	.4920	-4880	.4540	.4501	.4761	.4721	.4681	.4641
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3453
-0.4	.3446	.3409	.3372	-5336	.3300	.3264	-5228	.3192	.3156	-5121
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	-2236	.2206	.2177	.2148
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	-1922	.1504	.1867
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-1.0	.1587	.1552	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-1.1	.1357	.1335	.1314	.1292	.1271	,1251	.1230	.1201	.1190	.1170
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	,0985
-1.3	.0968	.0951	.0934	.0918	.0001	.0685	.0869	.0853	.0838	.0823
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.5	.0558	.0655	.0643	.0530	.0518	.0505	.0594	.0582	.0571	.0559
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233

HØGSKOLEN Alteset Valuestige

Prof Hans Georg Schaathun

Calculating a Confidence Interval

0.183

15th February 2014 5 / 6

Completing the Solution

$$\bar{X} - z_{\alpha/2} \cdot \sigma / \sqrt{n} \le \mu \le \bar{X} + z_{\alpha/2} \cdot \sigma / \sqrt{n}$$

•
$$\bar{x} =$$

- *z* = 1.96
- $n = 16, \sqrt{n} = 4$
- $\sigma/\sqrt{n} = 1$
- $z_{0.0.25} \cdot \sigma / \sqrt{n} = 1.96$

