Error Margin Estimating the Mean with Known Variance

Prof Hans Georg Schaathun

Høgskolen i Ålesund

11th February 2014

Estimating the Mean

- What is the mean μ ?
 - Stochastic variable X
 - Known standard deviation σ
 - Unknown distribution
- The Sample Mean is a point estimator
 - n observations: x_1, x_2, \ldots, x_n
 - Sample mean: $\hat{\mu} = \bar{x} = \sum x_i/n$
- How do we make a confidence interval?

Probability distribution

What is the probability distribution of \bar{X} ?

$$\bar{X} = \frac{X_1}{n} + \frac{X_2}{n} + \ldots + \frac{X_n}{n}$$

Variable	Expected value	Variance	Std.Dev.	
(X_i)	$\widehat{\mu}$	σ^2	(o)	
$\rightarrow \sum \frac{X_i}{n}$	$\frac{\mu}{n}$.	$\left(\frac{\sigma}{n}\right)^2$) <u>σ</u> n	
\bar{X}	$n \cdot \frac{\mu}{n}$	$n \cdot \left(\frac{\sigma}{n}\right)^2$		
7	= .	=		
\bar{X}	μ	$\left(\frac{\sigma^2}{n}\right)$	$\frac{\sigma}{\sqrt{n}}$	\

Central Limit Theorem: For large n, \bar{X} has normal distribution.

Estimation Error

- Estimation error $E = \bar{X} \mu$
 - $E \sim N(0, \sigma/\sqrt{h})$
- Normalised $Z = \frac{E}{\varphi \sigma / \sqrt{n}} = \frac{\overline{X} \mu}{\sigma / \sqrt{n}}$

$$Z = \frac{x - n}{\sigma}$$

Error Distribution

•
$$E = Z \cdot \sigma / \sqrt{n}$$

•
$$P(Z \leq -Z) = \alpha/2$$

$$P(E \le -e) = \alpha/2$$

$\alpha/2$	Z	e
→ 2.5%	1.96	$1.96 \left(\sigma / \sqrt{p} \right)$
→ 1.0%	2.33	$2.33 \cdot \sigma / \sqrt{n}$ $2.58 \cdot \sigma / \sqrt{n}$
→> 0.5%	2	$(2.58) \cdot \sigma/\sqrt{n}$

• We write $z_{\alpha/2}$

Matlab: $z = -icdf('norm', \alpha/2, 0, 1)$

2=-1.96. 0/Jn

Summary

• Error
$$E = \bar{X} - \mu$$

•
$$z_{\alpha/2}$$
 is such that $P(Z \le -z) = P(Z \ge z) = \alpha/2$

$$\bullet P(E \le -z_{\alpha/2} \cdot \sigma/\sqrt{n}) = P(E \ge z_{\alpha/2} \cdot \sigma/\sqrt{n}) = \alpha/2$$

•
$$z = -icdf('norm', \alpha/2, 0, 1)$$

•
$$P(|E| \ge z_{\alpha/2} \cdot \sigma/\sqrt{n}) = 0$$

- With probability $\beta = 1 \alpha$ (confidence level)
 - the error is within $\pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$