Confidence Interval for the Mean

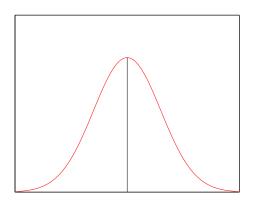
From Error Margin to Confidence Interval

Prof Hans Georg Schaathun

Høgskolen i Ålesund

11th February 2014

Error Margin



•
$$E = Z \cdot \sigma / \sqrt{n}$$

•
$$P(Z \le -z) = \alpha/2$$

$$P(E \le -e) = \alpha/2$$

$\alpha/2$	Z	e
2.5%	1.96	$1.96 \cdot \sigma / \sqrt{n}$
1.0%	2.33	$2.33 \cdot \sigma / \sqrt{n}$
0.5%	2.33	$2.58 \cdot \sigma / \sqrt{n}$

• We write $z_{\alpha/2}$

Matlab: $z = -icdf('norm', \alpha/2, 0, 1)$

From Error Margin to confidence interval

- Probability $\beta = 1 \alpha$:
 - $\mu Z_{\alpha \alpha} \cdot \sigma / \sqrt{n} < \bar{X} < \mu + Z_{\alpha \alpha} \cdot \sigma / \sqrt{n}$
- Turn it around:

•
$$\bar{X} - z_{\alpha_2} \cdot \sigma / \sqrt{n} \le \mu \le \bar{X} + z_{\alpha_2} \cdot \sigma / \sqrt{n}$$

- Probability is still β
- Et voilà we have a confidence interval
 - $\hat{\mu}_{low} = \bar{X} z_{\alpha} \cdot \sigma / \sqrt{n}$
 - $\hat{\mu}_{high}\bar{X} + Z_{\alpha_2} \cdot \sigma/\sqrt{n}$

Confidence interval for the mean

$$\bar{X} - z_{\alpha_2} \cdot \sigma / \sqrt{n} \le \mu \le \bar{X} + z_{\alpha_2} \cdot \sigma / \sqrt{n}$$

- Assumptions:
 - **1** We know σ
 - The normal distribution applies, e.g. either
 - 1 Large n, or
 - 2 X is normally distributed
- To come:
 - ullet Estimating σ for the normal distribution
 - Handling small samples with Student's t-distribution
 - Estimating the binomial proportion, p, when $X \sim B(n, p)$