The Standard Error

The Random Nature of Estimators

Prof Hans Georg Schaathun

Høgskolen i Ålesund

7th February 2014

Sample Mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Probability Distribution

The Standard Error

- Estimator $\hat{\theta}$
 - Stochastic variable
 - Probability distribution
 - Mean $E(\hat{\theta})$
 - Variance $var(\hat{\theta})$

Definition

The standard deviation σ of an estimator $\hat{\theta}$ is called the standard error.

• We write S.E.($\hat{\theta}$)

The Standard Error of the Sample Mean

Step 1: Variance

Question

What is the standard error S.E. (\bar{X}) ?

$$\operatorname{var}(\bar{X}) = \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^{n} X_{i}\right)$$

$$= \frac{1}{n^{2}}\operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right)$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n} \operatorname{var}(X_{i})$$

$$= \frac{1}{n^{2}} \cdot n \cdot \sigma^{2} = \sigma^{2}/n.$$

The Standard Error of the Sample Mean

Step 2: The Standard Error

Question

What is the standard error S.E. (\bar{X}) ?

S.E.
$$(\bar{X}) = \sqrt{\frac{\sqrt{\operatorname{var}(\bar{X})}}{\sqrt{\sigma^2/n}}}$$
$$= \frac{1}{\sqrt{n}}\sigma.$$

7th February 2014

Summary

- Estimators are stochastic variables
- The standard deviation of an estimator: Standard Error
- - where σ is std. deviation of X
- Larger samples (n) gives smaller standard error