Using the *t*-distribution An Estimation Exercise

Prof Hans Georg Schaathun

Høgskolen i Ålesund

13th February 2014

Prof Hans Georg Schaathun

Using the *t*-distribution

- B

Exercise

A class of 10 children compete in a 60m race. You record the following times:

9.2*s*, 9.9*s*, 10.2*s*, 10.7*s*, 11.1*s*, 11.1*s*, 11.4, 11.5, 11.8, 13.5*s*

Calculate a 95% confidence interval for the mean time.

Step 1: Sample Mean

The point estimator

	9	.2s	
	9	.9s	
1	0	.2s	
1	0	.7s	
1	1	.1s	
1	1	.1s	
1	1	.4s	
1	1	.5s	
1	1	.8s	
1	3	.5s	

Prof Hans Georg Schaathun

イロト イヨト イヨト イヨト

Step 2: Sample Standard Deviation

	-11.04s	squared
9.2s	-1.84s	3.3856
9.9s	-1.14s	1.2996
10.2s	-0.84s	0.7056
10.7s	-0.34s	0.1156
11.1s	0.06s	0.0036
11.1s	0.06s	0.0036
11.4s	0.36s	0.1296
11.5s	0.46s	0.2116
11.8s	0.76s	0.5776
13.5s	2.46s	6.0516
110.4s		12.4840

•
$$\bar{x} = 11.04$$

• $s^2 = \frac{\sum(x_i - \bar{x})}{n-1} = \frac{12.484}{9}$
• $s^2 = 1.3871$
• $s = \sqrt{1.3871} = 1.1778$

The formula

$$\bar{X} - t_{\alpha/2}^{(n-1)} \cdot s/\sqrt{n} \le \mu \le \bar{X} + t_{\alpha/2}^{(n-1)} \cdot s/\sqrt{n}$$

Prof Hans Georg Schaathun

Using the t-distribution

13th February 2014 5 / 7

イロト イヨト イヨト イヨト

Step 2: Using a probability table From Frisvold and Moe

Tabeller 289

Studentfordolingen. Tabellen gir vurdien av t.

$P(T \ge t)$	0.050	0.025	10.0	0.005	0.0005
$P(T \le t)$	0.950	0.975	0.99	0.995	0.9995
$P(T \ge t)$	0.100	0.050	0.02	0.010	0.0010
$P(T \leq t)$	0.900	0.950	0.98	0.990	0.9990
1	6.314	12.706	31.821	63.656	635.578
Frihets- 2	2.920	4.303	6.965	9.925	31.600
grader: 3	2.353	3.182	4.541	5.84I	12.924
- 4	2.132	2.776	3.747	4.604	8.610
5	2.015	2.571	3.365	4.032	6.869
6	1.943	2.447	3.143	3.707	5.959
7	1.895	2.365	2.998	3.499	5.408
8	1.860	2.306	2.895	3.355	5.041
9	1.833	2.262	2.821	3.250	4.781
10	1.812	2.228	2.764	3.169	4.587
11	1.796	2.201	2.718	3.106	4.437
12	1.782	2.179	2.681	3.055	4.318
13	1.771	2.160	2.650	3.012	4.221
14	1.761	2.145	2.624	2.977	4.140
15	1.753	2.131	2.602	2.947	4.073

Prof Hans Georg Schaathun

12

Completing the Solution

$$\bar{X} - t_{\alpha/2}^{(n-1)} \cdot s/\sqrt{n} \le \mu \le \bar{X} + t_{\alpha/2}^{(n-1)} \cdot s/\sqrt{n}$$

- $\bar{x} = 11.04s$
- *s* = 1.1778
- $n = 10, \sqrt{n} = 3.1623$
- $s/\sqrt{n} = 0.3724$
- *t* = 2.262
- $t \cdot s / \sqrt{n} = 0.8425$

