Simulering og Statistikk - Module 1, January 2014

Dr S.B.van Albada and Prof Dr H.G. Schaathun

I. Stochastic variables

In this section we introduce the concept of a stochastic variable by studying coin
flips.
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1. What possible outcomes do we have for a single coin flip experiment?
2. What are the probabilities for each of these outcomes?

3. Take a coin and flip it 15 times while keeping track of the results. Draw a
histogram of the results.

In the following, assign the outcome 1 to heads, and the outcome 0 to tails.

The outcome of the coin flip experiment is not fixed; instead, there are two possible
outcomes, both with equal probabilities P(heads) = 50% and P(tails) = 50%, or, as we
use to write in probability theory, P(heads) = 0.5 and P(tails) = 0.5. We call the
outcome of the coin flip experiment a stochastic variable (or random variable).

We will now simulate a single coin flip.

4. Input the following code into MATLAB:

x=rand<0.5

This code returns either 0 or 1, both with equal probabilities P(tails) = P(heads)
= 0.5. More precisely, it generates a (pseudo) random number in the interval

(0, 1). If the resulting number is smaller than 0.5, x is assigned the value 0,
otherwise x gets the value 1.

Explanation: The function rand returns a (uniformly distributed) (pseudo)
random number in the interval (0, 1). The statement rand<0.5 is either true (1)
or false (0). This result is assigned to the variable x.

> Study: §3.1 Deterministic and stochastic models

§3.2 Stochastic experiments
Exercises: E3.1, E3.2

5. Repeat the above simulation a number of times, simulating a series of coin
flips in order to verify that the outcome takes on random values from the sample
space (norsk: utfallsrommet) {0, 1}.



We can also call the set of all possible outcomes the population.

The following code generates a series of 15 independent coin flips, and generates
a histogram of the results.

clear

n=15
x=rand(1l,n)<0.5
hist(x,0:1)

Explanation: The function rand(m, n) returns an m-by-n matrix of (uniformly
distributed) pseudo random numbers, all in the interval (0, 1). The statement
rand(1, n)<0.5 returns true (1) or false (0) for all matrix indices.

6. Input the code in MATLAB, and run it a couple of times.

A stochastic variable is a variable that can take on multiple values, each with its
own probability. These probabilities have to add up to one: We are 100% sure
that the experiment has some outcome. In the case of a coin flip, we have:
P(heads) + P(tails) = 0.5+ 0.5=1.

We indicate a stochastic variable with a capital letter, like X or Y. The same letter
in lower case indicates the possible outcomes (norsk: utfall) that the stochastic
variable can take on. In the case of a coin flip, we can write P(X=x) = 0.5. This
means that the probability that our stochastic variable X takes on the value x,
equals 50%. This holds for both possible outcomes: P(X=0) = 0.5 (i.e., 50%
probability that the outcome equals “tails”), and P(X=1) = 0.5 (i.e., 50%
probability that the outcome equals “heads”).

We can define an event (norsk: hendelse) as a set of outcomes. For example, the
outcomes of a single roll of dice are {1, 2, ..., 6}. We might be interested in the
case that we roll either 5 or 6, in other words, the event {5, 6}.

7. What is the probability for the event {5, 6}?

In case all outcomes have equal probabilities, the probability for an event can be
calculated as:

P(event) =

Number of favourable outcomes

1
Number of possible outcomes ( )
where an outcome is called “favourable” if it lies in the desired event.

8. What is the probability for throwing 7 eyes in two rolls of dice?

Study: §3.3 Probability
§7.1 until §7.1.1 Discrete uniform distribution
Chapter 2 Statistics

II. Discrete probability distributions

9. If we flip a coin twice, what is the probability to get the summed outcomes 0, 1
and 2, respectively?



10. Draw a bar chart with the possible outcomes on the horizontal axis and the
corresponding probabilities on the vertical axis. The resulting plot shows the
probability distribution for the coin flip experiment with two coins.

11. Take a coin and flip it twice. Repeat this experiment 15 times, and draw a
histogram of the results.

12. Input the following code into MATLAB:

clear

n=2

trials=15

for i=l:trials
t=rand(1,n)<0.5;
x(i)=sum(t);

end

hist(x,0:n)

Explanation: The array t has length n. For each trial, all its elements are assigned
zeroes and ones with equal probabilities, as in a virtual coin flip experiment with
n coins. The summed outcome is then written to the ith element of array x.
Finally, a histogram of the outcomes is generated, showing the counts for the
possible outcomes 0, 1, ... n.

13. If we flip a coin three times, what is the probability to get the outcomes 0, 1, 2
and 3, respectively?

14. Draw a bar chart with the possible outcomes on the horizontal axis and the
corresponding probabilities on the vertical axis. The resulting plot shows the
probability distribution for the coin flip experiment with three coins.

15. Take a coin and flip it three times. Repeat this experiment 15 times, and
make a histogram of the results.

16. Modify the above MATLAB code and simulate a series of 15 experiments,
each with 3 coin flips.

17.1f we flip a coin a number of times n, what possible outcomes do we have if
we add together the outcomes of these n coin flips?

18. Input the following code into MATLAB:

clear

n = 2; % Number of coin flips for each trial

trials = 30; % Number of trials

for i = 1l:trials

t = rand(1l, n) < 0.5; % For trial #i, t is an array of n coin flip

outcomes.
x(i) = sum(t); % For trial #i, x(i) is the total number of heads.
end

probabilities(:,1) = hist(x, (0:n), 1) / trials;

The experimental probabilities for the total numbers of heads 0,
1, ..., n are assigned to the first column of the matrix named
"probabilities".
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for i = 1:(n+l)
probabilities(i,2) = nchoosek(n, i-1) / 2"n;
% The theoretical probabilities for the total numbers of heads 0,

°
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1, ..., n are assigned to the second column of the matrix
% named "probabilities".
end

bar((0:n), probabilities, 'grouped')
% The experimental and theoretical probabilities for the total
% numbers of heads are plotted together in a histogram.

19. Run the script in MATLAB.
a. In the MATLAB workspace containing all used variables, double-click on
the variable t to show its value. Explain what you find. If necessary, rerun the
code.
b. Next, inspect the variable x. Explain your findings.
c. Inspect the value of the variable probabilities. Again, explain your findings.

20. Adapt the above code and sample the probability distribution for the sum of
3,5 and 10 coin flips. What do you observe?

The fascinating effect that the sum of multiple random variables very quickly
approaches a normal distribution (or bell curve or Gaussian distribution) is called
the central limit theorem and will be covered later.

21. What is the probability for throwing 1, 2, ...,6 eyes with one dice? Make a
table and plot the results.

22.What is the probability to throw exactly or less than 0, 1, 2, ...,6 eyes with a
single dice? Make a table and plot the probability distribution.

The (cumulative) distribution function (norsk: (kumulativ) fordelingsfunksjon)
Fx(x) is defined as the probability to get a result less than or equal to x:
Fx(x) = P(X < x) (2)

23. Plot the cumulative distribution for a single dice roll.

24. What is the probability for throwing 2, 3, 4, ...,12 eyes in two rolls of dice?
Make a table and plot the probability distribution.

25. Plot the cumulative distribution function for a roll with two two dice.
26. Use the following MATLAB code to retrieve the empirical cumulative
distribution function for a sample consisting of 15 rolls with two dice:

y=[1,3,6,10,15,21,26,30,33,35,36]/36%The c.d.f. (verify the values!)
stairs(2:12, y, 'r'") % Plot the c.d.f. in red.

o\

hold on % Superimpose the next plot

n=15

x=sum(ceil(6*rand(2,n))) % Roll a pair of dice n times.

% x is an array of length n.
stairs([0 sort(x)],0:1/length(x):1) % Plot the empirical c.d.f. of x.

hold off

oe

End of superposition

27.Explain the code.

28. Increase the sample size. What do you observe?
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2= Study: §4.0 Introduction to stochastic variables

§4.1Discrete stochastic variables
Exercises: E4.1, E4.3, E4.4, E4.5

III. Mean
Take a coin and flip it 5 times, while keeping track of the numbers of heads (1)
and tails (0). Such a set of observations is called a sample.

29. Plot the results in a histogram.
30. Calculate your sample mean (i.e., the average outcome).
31. Verify that the sample mean X can be written as

XiXi

n

x =

(3)

What does the index i mean?

32. The sample mean should be a number between the outcomes zero and one.
What possible outcomes for the sample mean are there after 5 single coin tosses?

The expected value E[X] of a discrete stochastic variable is a weighted average
over all possible outcomes:

ux = E[X] = X x;P(x;) (4)

In the special case that all possible outcomes are equally likely, the expected
value can be calculated as the sum over all possible outcomes, divided by the
number of possible outcomes (see exercise 23).

33. What is the expected value for the outcome of a single coin flip?

34. Prove that the expected value can be written as

uy = E[x] = 24 (5)

n

if all possible outcomes in an experiment are equally likely.

What does the index i mean? Compare to exercise 20!
3
s
¥
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35. Take a single dice and roll it 15 times. Write down the results.
36. Plot the results in a histogram.
37. Calculate the sample mean for your experiment.

38. What possible outcomes for the sample mean are there after two rolls of
dice?



39. What is the expected value for a single roll of dice?

The following MATLAB code simulates a series of 15 dice rolls, and generates a
histogram of the results.

n=15
x=ceil(6*rand(1l,n))
hist(x,1:6)

Explanation: The function rand(m, n) returns an m-by-n matrix of uniformly
distributed pseudo random numbers, all in the interval (0, 1). Multiplication by 6
gives random numbers in the interval (0, 6). Finally, the function ceil returns the
closest larger integer.

40. Input the code into MATLAB and run it a number of times.

If we sample a population very often, and take the average over the sample
means (Eq. 3), the average value will approach the population mean (Eq. 4 / 5).

Example: We repeatedly throw three dice.

* The outcomes could be: {1, 1, 4}, {2, 3, 5}, {6, 1, 4}, ...

* The sample means would then be (verify!) 2, 10/3,11/3, ...

* The average of these sample means would then be (verify!) 2, 8/3, 3, ...
* This series will in the end converge to the expected value (verify!) 3.5.

We call the sample mean an estimator for the expected value.

Exercises: E5.1

IV. Standard deviation and variance

41. In this assignment we will study the dispersion (norsk: spredning) of statistical
data. Input the following code into MATLAB and run it:

clear

n=10
x=ceil(2*rand(1l,n))-1
y=ceil(6*rand(1l,n))
t=1:n

plot(t,x,t,y, 'LineStyle', 'none', 'Marker', 'diamond')

simulate n coin tosses
simulate n dice rolls

oe
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a. For which of the two experiments is the dispersion largest?
b. Collect the results of the 10 coin tosses and the 10 rolls of dice in a table.
c. Compute the sample mean for both experiments.



In order to quantify the dispersion, we need a measure for the variation
around the mean. We could try to take the average difference with the sample
mean:

Ni(xi—x) (6)

n

Compute the sample average of the difference with the sample mean for the
ten coin tosses.

Prove that the answer to the previous exercise should be zero. Hint: Split the
summation in two parts.

As the outcome is zero independent of the spread in the data, expression (6)
is not a good measure for the dispersion.

Propose a better measure for the dispersion of a sample.

The most obvious way to solve the above problem is to average the distance
from the mean:

Zilxi_f| (7)

n

Compute expression (7) for the ten coin tosses as well as for the ten rolls of
dice. Explain your findings. Does expression (7) give a good measure for the
dispersion?

The main problem with expression (7) is that the absolute value is a bit
unpleasant to work with as the function is not continuously differentiable.
Therefore, the commonly-used measure for dispersion is slightly different:

_ | Zixi—%)?
5= [Rece? (®)

s is called the standard deviation of the sample.

The “average” squared distance from the sample mean is called the sample
variance:

(s 2
52 — Yi(xi—x) (9)

n-1

Note: The reason why we divide by (n-1) instead of n is subtle and will be
explained later. It is therefore not entirely correct to use the word “average”.

Compute the variance and standard deviation for the ten coin tosses as well
as for the ten rolls of dice. Does the standard deviation give a good measure
for the dispersion? Compare your results to your answers to the previous
exercise. Explain the difference.
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The following MATLAB code can be used to compute the variance of the coin
flip sample:

x _diff squared = (x-mean(x))."2
x_variance = sum(x_diff squared)/(n-1)

Explanation: The dot operator is used to apply an operation (here taking the
square) to every element of a matrix.

Use and modify the code in order to verify your results in exercise ¢, d, e, g,
and h.

We have learnt how to measure the spread of data in a sample. But is it also
possible to predict the spread of a given experiment? The answer is yes!

In the case of a coin toss, we know that we get the outcome 0 with a
probability P(0)=0.5 and the outcome 1 with a probability P(1)=0.5, and the
expected value of the outcome is u = 0.5.

What is the expected value for the squared distance from u?
Explain that the formula

o2 = Yi(xi—%)?

n

(10)

gives the desired result. 62 is called the population variance. The square root
of the population variance is called the standard deviation of the population.

o= [Zi&i—D? (11)

n
What does the index i stand for? Compare with Equation 8!

Compute the population variance and standard deviation for a roll of dice.

m. Verify your results with MATLAB.

If we sample a population very often, and take the average over the sample
variances (Eq. 9), the averaged value will approach the population variance (Eq.
10).

Example: We repeatedly throw three dice.

* The outcomes could be: {1, 1, 4}, {2, 3, 5}, {6, 1, 4}, ...
* The sample variances would then be (verify!) 3, 7/3,19/3, ...
* The average of the sample means would then be (verify!) 3,8/3,35/9, ...

¢ This series will in the end converge to the population mean (verify!)
35/12.

We call the sample variance en estimator for the population variance.



42.The MATLAB command mean (x) gives the mean of an array of values x. Use
the command to find the mean of 1, 100, 10 000 and 1 000 000 simulated single
coin tosses. Repeat the experiment 5 times and collect the results in a table. (You
should end up with 20 mean values). What do you observe?

43. Compute the mean of 1, 100, 10 000 and 1 000 000 simulated single dice rolls.
Repeat the experiment 5 times and collect the sample means in a table. (In all, you
should have collected 20 sample means). What do you observe?

As you probably have found in assignment 38 and 39, the sample mean tends to
approach the expected value as sample size increases. the dispersion (norsk:
spredning) becomes smaller for larger sample sizes.

Exercises: E5.3, E5.4

V. Independent events

Repeat: §1.5 Set theory
Exercises: E1.1, E1.2

44. If we throw two dice, what is the probability P(first 3, second 2) that the first
one shows 3 eyes and the second one 2 eyes? Express your answer in terms of
the probabilities P(first 3) (i.e., the probability for 3 eyes on the first roll) and
P(second 2) (i.e., the probability for 2 eyes on the second roll).

In the previous assignment, the events P(first 3) and P(second 2) are independent:
The first dice has no influence whatsoever on the second dice, and vice versa. In
the case of independent events A and B, the probability that both events will take
place is simply the product of the probabilities that events A and B take place:

P(ANB) = P(A)P(B) (12)

45. If we throw three dice, what is the probability P(first 3, second 2, third 2)
that the first one shows 3 eyes, the second one 2 eyes and the third one 2 eyes?

Express your answer in terms of the probabilities P(first 3), P(second 2) and
P(third 2).

46. If we throw three dice, what is the probability P(first 3, second plus third 4)
that the first one shows 3 eyes, and the sum of the second and third dice equals

4? Express your answer in terms of the probabilities P(first 3) and P(second plus
third 4).

Study: §5.3 Independent stochastic variables



VI. Dependent events

47. In this exercise, we will see how to deal with multiple events that are not
independent.

d.

If we throw two dice, what is the probability P(first 3, first plus second 4)
that the first dice shows 3 eyes, and the sum of the first and second dice
equals 47

[s it possible to express your answer in terms of the probabilities P(first
3) and P(first plus second 4)?

If we know that the first dice shows 3 eyes, what is then the probability
P(first plus second 4 | first 3) that the sum of the first and second dice
equals 4 eyes?

[s it possible to express the probability P(first 3, first plus second 4) in
terms of the probabilities P(first 3) and P(first plus second 4 | first 3)?

If we know that the sum of the eyes of the two dice equals 4, what is then
the probability P(first 3 | first plus second 4) that the first dice shows one
eye?

[s it possible to express the probability P(first 3, first plus second 4) in
terms of the probabilities P(first plus second 4) and P(first 3 | first plus
second 4)?

In the previous assignment, the events P(first 3) and P(first plus second 4) are
dependent. If the first dice shows 3 eyes, the second dice has to show one eye in
order to make the sum equal to 4. In the case that events A and B are dependent,
the probability that both events will take place cannot be calculated as the
product of the probabilities that events A and B take place. Instead, we have to
deal with the conditional probability P(A | B) that A happens, in the case that we
know that B happens:

P(ANB) = P(A)P(A|B) (13)

P(A | B) is pronounced as “P(A given B)”.

Study: §3.5 Dependent events

§3.6 General product laws
§3.7 Independent events

Exercises: E3.11, E3.14, E3.15,E7.1

VII. Mutually exclusive events

48. We throw three dice. What is the probability that:

d.

the sum of the first two is less than 5 (event A)?

b. the sum of the last two is larger than 9 (event B)?

the sum of the first two is less than 5, while the sum of the last two is
larger than 9 (event A N B)?

10



Two events A and B are mutually exclusive if they impossibly can happen both. In
other words: If A happens, B cannot happen (and vice versa, of course). If two
events are mutually exclusive, the probability that both happen is zero:

P(ANB) =0 (14)

VIII. Continuous stochastic variables

49. What possible outcomes do we have for the following measurements,
assuming that we can measure infinitely accurately:

the height of an arbitrary person?

the weight of an arbitrary person?

the age of an arbitrary person?

time modulo one second?

/0o

In the previous exercise we have seen examples of random variables. However,
the difference with the random variables we have seen before is that these are
continuous random variables that can take on values over a continuous range.

50. Input the following code into MATLAB:

x=rand

This code returns a uniformly distributed continuous random (pseudo) random
number in the interval {0, 1).

51. Repeat the above simulation a number of times, simulating a series of
observations in order to verify that the outcome takes on random values from
the sample space (0, 1).

52. Take a stopwatch that is able to measure at least thousands’ of seconds. Stop
it at an arbitrary moment (wait for some time and do not watch your clock in the
mean time) and write down the measured random time modulo one second.
(This should give you a number between 0 and 1). Repeat this ten times and
collect your data in a table.

53. What are the probabilities for each of the outcomes (still assuming infinite
measurement precision)?

54. Draw the empirical cumulative distribution function based on your data.
55. Draw the theoretical cumulative distribution function in the same plot.
56. Input and run the following code in MATLAB:

n=10;

X = rand(1l,n)

stairs([0 sort(x)], 0:1/n:1, 'r') % Plot the empirical c.d.f.

hold on
y = 0:.001:1

11



stairs(y, y, 'b') % Plot the c.d.f.
hold off

57. Explain the code and compare to exercise 51 and 52.
58. Increase the sample size. What do you observe?

59. What would the probability distribution look like? (Remember that the sum
of all probabilities should be one)!

As we have seen, we can define the cumulative distribution function for a
continuous stochastic variable in the same we as we have done for a discrete
stochastic variable: The cumulative distribution function Fx(x) is as always
defined as the probability to get a result less than or equal to x:

Fy(x) = P(X < x) (15)

However, the probability distribution has become useless, as the probability for
every single value equals zero, whereas the integrated (total) probability should
equal one. We therefore define a new function, the probability density fx(x) as the
relative likelihood for the random variable to take on a given value. The area
under the density function between two values gives the probability that the
random variable falls between these values. The integral (total area) of the
probability density function over the entire space is equal to one.

60. Draw the probability density for a uniformly distributed continuous random
variable representing a point in time between zero and one seconds.

In order to achieve the probability density function empirically, we cannot use
the exact same method as we used for the probability distribution of a discrete
random variable. The problem is that we never will get the same result twice,
since the probability for each event is zero. We can solve this problem by
gathering together data that lie close together, a method that is called binning. In
this way, we can achieve a histogram of the data representing the relative
probabilities for the different areas. Finally, we normalize such that the total area
under the histogram equals one.

Study: §4.2 Continuous stochastic variables
Exercises: E4.7

61. What will the probability density look like if we instead of one, each time
draw two uniformly distributed random numbers between zero and one (for
example by the stopwatch method) and add these together?

62. Take a sample of 15 measurements and draw an empirical probability
density function for the previous exercise. Use a sample size of 0.4.

63. Input and run the following code in MATLAB:

n=15;
nBins=5;

X = rand(1l,n)
y rand(1l,n)
z=(x+y)

oe

Sample size

Number of bins in the histogram
Uniform random number in <0,1>

And another

Sum of two uniform random variables

]
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bins=1/nBins:2/nBins:2-1/nBins% The array of bin centres
(indicated by centre of first bin,

step size, and centre of last bin)

We need to make a bar chart as a histogram is not nomalizable:
[nelements,centers] = hist(z,bins)

bar (centers,nelements*nBins/2/sum(z), 'b') % Note the normalization of
% the number of elements in order to get the probability density!
hold on

y = 0:.001:2

plot(y, l-abs(y-1), 'r') % Theoretical probability density for

% the sum of two uniform random variables

hold off

0@ o
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64. Increase the sample size and the number of bins in order to sample the
probability density function.

65. Adapt the above code and sample the probability density for the sum of 3, 4
and 5 uniformly distributed continuous random variables. What do you observe?

As in exercise 20, we are witness of the central limit theorem: The sum of
multiple random variables very quickly approaches a normal distribution. The
central limit theorem will be covered later.

IX. Mean and variance for a continuous random variable

The sample mean and variance for a continuous random variable are calculated
in the exact same way as we have done for a discrete random variable see
formulas given at exercises 32 and 41.g.

However, in order to calculate the expected value, variance and standard
deviation of the population of all possible outcomes we now need to integrate
instead of sum over all possible outcomes:

uy = E[X] = [ xf(x)dx (16)

ox? = E[(X — ux)?] = [ (x — ux)?f (x)dx (17)

66. Take your sample of 10 uniformly distributed continuous random variables
from exercise 52. Compute the sample mean, standard deviation and variance.

67. Calculate the expected value, variance and standard deviation for a uniformly
distributed continuous random variable in the interval <0, 1>. Compare your
results to the previous exercise.

68. Take your sample of 15 random numbers from exercise 62 generated as the
sum of two uniform random variables. Compute the sample mean, standard
deviation and variance.

69. Calculate the expected value, variance and standard deviation for the sum of
two independent uniformly distributed continuous random variables in the
interval <0, 1>. Compare your results to the previous exercise.

Study: §5.1 Expected value
§5.2 Dispersion, variance, standard deviation
Exercises: E5.7, E5.12
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