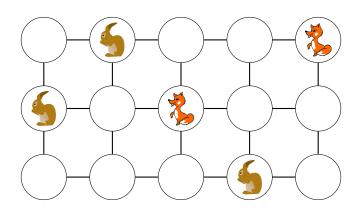
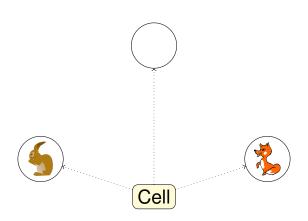
Cellular Automata Life on a Grid


Prof Hans Georg Schaathun

Høgskolen i Ålesund

27th January 2014

The world is a grid



The Cellular Automaton

- Each cell is active
- The cell has a state
- In a simple predator-prey scenario, we could have
 - Occupied by prey
 - Occupied by predator
 - Empty
- We do not model the occupant separately
- The cell decides its own state transitions

Cell States

Automata

An automaton is a state machine.

Definition

A state machine is a directed graph. The nodes are called states, and the edges are called transitions. Each transition is labelled with a condition indicating when and how the system should change from one state to another.

The system is in exactly one state at any one time.

Cell State Transitions

Cells can observe neighbour cells as a basis for transitions.

- Empty cell with two neighbour rabbits
 - \rightarrow birth \rightarrow new rabbit
- Fox with with adjacent rabbit
 - ightarrow fox moves and dines ightarrow empty cell
- Rabbit with adjacent fox and adjancent empty cell
 - \rightarrow rabbit flees \rightarrow empty cell
- Rabbit reaches age limit
 - \rightarrow dies \rightarrow empty cell

Summary

- Two ways to model on a grid world
 - Active agents agent-based models
 - Active cells cellular automaton
- Cellular automaton
 - each cell is modelled as a state machine
 - the cell monitors its state transition conditions