Simulering og Statistikk - Module 1, January 2014

Dr S.B.van Albada and Prof Dr H.G. Schaathun

In this tutorial we focus on different ways to simulate complex systems. As an
example, we consider the predator-prey system, which is the topic of this
module.

I. Predator-prey model

In the predator-prey model, we consider the
dynamics of populations of a predator species (e.g.,
foxes) and a prey species (e.g., rabbits). In some
areas, foxes are major predators of rabbits. The populations of
both species in these areas show large oscillations over time.

An example of such oscillations in a different predator-prey system, consisting of
numbers of a predator, the Canadian Lynx, and its prey, the Snowshoe Hare, are
shown in the following figure!:
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Figure 1. This figure shows the numbers of Canadian Lynx and Snowshoe Hares
that were trapped for their pelts over a period of time covering nearly a century.
We may assume that these numbers were proportional to the total numbers of
animals in the populations.

In order to be able to fully understand a predator-prey system such as that of the
lynx and the hare, we have to be sure that other factors than the interaction
between the predators and preys do not play a big role. To begin with, if, in
addition to the lynx, there would be another predator of the hare, we would need
information about (at least) the numbers of that other predator in order to fully
understand the system. Secondly, in case the food supply of the hare would not
be abundant, we would need to consider that as well. Moreover, if the lynx would
have another food source in addition to the hare, we would have to take that into
account as well. Lastly, in case of any other external factor such as a substantial
change in climate, we would not be able to fully understand the dynamics of the

1 Source: https://www.math.duke.edu//education/ccp/materials/diffeq/predprey/pred1.html



predator-prey system without more information.

1. On average, what was the period of oscillation of the lynx population??
2. 0n average, what was the period of oscillation of the hare population3?

3. 0On average, do the peaks of the predator population match or slightly precede
or slightly lag those of the prey population? If they don't match, by how much do
they differ? (Measure the difference, if any, as a fraction of the average period.)*

4. How many lynxes and hares were approximately caught in the worst years?

II. Covariance and correlation

In the previous tutorial, we have studied properties of a single stochastic
variable X, such as the mean uy = E[X]and the variance o = E[(X — uy)?]. We
have learnt that the variance is the mean squared distance from the mean.

In the data set shown in figure 1, we do not have a single stochastic variable, but
two: For each year, we have the number of trapped hares, and the number of
trapped lynxes. In such cases where more than one stochastic variable are
measured simultaneously, it is interesting to know if these variables change
together, since this could mean that there is a dependence between them. If
stochastic variables change together, we say that they are correlated.

5. A company produced 5 models of boxes of different volume and height. Table

1 shows the different models with their prices, as well as how many items were
sold:

Model Volume (L) | Height (cm) Price (kr.) Numbers sold
A 2 10 300 90
B 3 15 400 80
C 4 20 350 60
D 5 25 500 20
E 6 30 450 50

Table 1. Five different boxes with their volumes, height, price, and numbers sold.

a.

oo

Make a plot of the height as a function of the volume, a plot of the price as
a function of the volume and a plot of the numbers of boxes sold as a

function of volume.

[s there a correlation between volume and height?
[s there a correlation between volume and price?
Which correlation is larger?

2 Source: https://www.math.duke.edu//education/ccp/materials/diffeq/predprey/pred1.html
3 Source: https://www.math.duke.edu//education/ccp/materials/diffeq/predprey/pred1.html
4 Source: https://www.math.duke.edu//education/ccp/materials/diffeq/predprey/predi.html




e. Isthere a correlation between the volume of the boxes and how many of
them were sold? If so, is it a positive, or a negative correlation?

The covariance is an estimator that tells us if two stochastic variables X and Y are
correlated:

oxy = E[(X —ux)(Y — uy)]. (D

In case of a discrete probability distribution:
1
Oxy = ;Zi(Xi — ) (Vi — py) (2)

6. In this exercise we compute the population covariance oy between volume
(V) and height (H), the population covariance ay,p between volume and price (P)
and the population covariance oy, between volume and numbers sold (N) (see
table 1).
a. Compute the average volume, height, price and number of the boxes sold.
b. Use equation (2) to compute the covariances oy, oyp and oyy. Do the
numbers reflect the correlation between the different quantities? In what
sense?

We have seen that the covariance shows if there is a positive, or a negative
correlation between two stochastic variables. The result is proportional to the
spread in X and the spread in Y. Another measure for the correlation between
two stochastic variables X and Y is the correlation coefficient. It is defined as:

p= (3)

UXU}"

The correlation coefficient returns a value between -1 (perfectly anti-correlated) and 1
(perfectly correlated). A correlation coefficient of zero means that the variables are
uncorrelated.

7. In this exercise we compute the correlation coefficients pyy, pyp and pyy (see
table 1).
a. Compute the standard deviations oy, oy, op and oy.
b. Compute the correlation coefficients pyy, pyp and pyy -
c. Do the correlation coefficients reflect the observed amounts of correlation in
the data observed in exercise 5?

8. In this exercise we study the correlation between the numbers of trapped
lynxes and hares (see figure 1).
a. Do you expect to find a correlation between the numbers of trapped hares and
lynxes in figure 1?
function Correlation

clear;
years=1845:2:1903;



lynx_pelts =
1000*[32,50,12,10,13,36,15,12,6,6,65,70,40,9,20,34,45,40,15,15,60,80,26,18,37,

50,35,12,12,25]; %Numbers of lynxes trapped

hare_pelts =
1000*[20,20,52,83,64,68,83,12,36,150,110,60,7,10,70,100,92,70,10,11,137,137,
18,22,52,83,18,10,9,65]; %Numbers of hares trapped

cov(lynx_pelts, hare_pelts) % the covariance matrix
corrcoef(lynx_pelts, hare_pelts) % the matrix of correlation coefficients
figure

plot(lynx_pelts, hare_pelts,'x’)

xlabel('lynx pelts')

ylabel('hare pelts')

b. Download and run the above MATLAB script Correlations.m.

c. Study the scatter plot in which the number of trapped hares is plotted as a
function of the number of trapped lynxes. What value for the correlation
coefficient would you approximately expect?

The code returns the covariance matrix and the matrix of correlation coefficients

for the numbers of trapped hares (H) and lynxes (L). These matrices consist of the
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numbers.

d. Why do the covariances have such large values?

e. Why are the diagonal elements of the matrix of correlation coefficients
equal to one?

f. Compare the correlation coefficient to your estimated value in c.

III. Lotka-Volterra equations

One of the first and basic models that try to explain observed population
fluctuations as considered in the previous section, was the Lotka-Volterra
equation. The Lotka-Volterra equations are a pair of coupled differential
equations:

dx

- = x(a—By) (3)
% = —y(y —éx) (2)

The variable x denotes the number of prey animals, y the number of predators; t
denotes time and «, 5, y and § are the parameters of the model, all positive
numbers. Let us first try to understand the model.

9. In this exercise, we will investigate the meaning of the model parameters.

dx
a. What does = mean?

dx 10000
b. What would = = ——
dt month

c. Explain that reproduction of prey animals can be described by % = ax,

ean?

where a is the (average) number of offspring of a prey animal per time.



dx 10000
d. What would — = —
dt month

Explain that the consumption of prey animals by predators can be

ean?

described by % = —pBxy, where [ is the probability per unit time that a

given predator animal catches a given prey animal.
f. Explain that passing away of predator animals can be described by
ay

prialay 47 where v is the (average) probability per unit of time that a

predator animal passes away.
g. Explain that reproduction of predator animals can be described by

d . : : .
d—{ = 6xy, if we assume that the birth rate of predators increases linearly

with the number of prey animals consumed. Hint: Use exercise e.
h. Explain that the number of predators that are born per number of prey
animals that they consume equals §/f.

We say that the system of differential equations is first-order, as only first
derivatives of x and y are present. Furthermore, the differential equations are
non-linear, as products of x and y appear in the equations.

IV. Numerical integration of differential equations

How can we solve differential equations like the Lotka-Volterra equations? To
begin with, non-linear differential equations are often difficult to solve
analytically. However, for given parameters and initial conditions, one can often
find the solution to great accuracy by numerical methods. An exact solution of
the Lotka-Volterra equations actually does exist. However, we will here focus on
numerical integration of the differential equations, as these methods are generally
applicable.

IV.1. Euler method

The essence of numerical integration of differential equations is as follows.
Consider the definition of the derivative:

x(t+At)—x(t)

v (3)

2 _ lim
dt - At—0

If we now, instead of an infinitesimal time step take a finite, but small time step
At, we can approximate equation 1 as:

x(t+A)—x(t) _

0O — (o — By) @)
or, reordering terms:
x(t+ At) = x(t) + At - x(a — By) (5)

For given parameters a and £ and initial conditions (for example, x(0)=20 000
rabbits) we can approximate the number of rabbits after one small time step (for



example, At = 15 min). It is that simple! We do the same for the number of
predators

y(t+At) = y(t) — At - y(y — 6x) (6)

and achieve in this way the numbers of predators y(t+At) and prey x(t+At) after
one time step At. From there on, we proceed in exactly the same way in order to
compute the numbers of animals after two time steps, and so on. This method is
called the Euler method.

10. Given are the following parameters: @ = 1.1; £ =0.07; y = 1.3 and § = 0.02;
and as initial conditions: 20.0 foxes and 200.0 rabbits at t = 0.

a. Compute the numbers of foxes and rabbits after a time step of size 0.01.

b. Compute the numbers of foxes and rabbits after one and two time steps of
size 0.005.

c. Compare the results in a. and b.

Numerical integration is a way of simulating a system described by a set of
differential equations. It is one of the most-used methods for any engineer or
scientist, and is applied, to mention some examples, in flight simulators, chemical
process modelling, and simulations of electrical circuits.

However, there exist much faster (and more stable) methods than the Euler
method. The most famous (but not the best) of these is the Runge-Kutta method.
Whereas the Euler method only makes use of the first derivative of the right-hand
side of differential equations like (1) and (2), Runge-Kutta approximates the
functions on the right-hand side to a higher order of choice by cleverly
combining several Euler steps. We will not go into the details of the Runge-Kutta
method here, but we will use a MATLAB implementation of it in the next section.

IV.2. Simulation

11. Input and run the following script in MATLAB:

clear

% Define boundary conditions:
t0 = 0;

tfinal = 15;

y0 = [200 20]"';

% Simulate the differential equation:
[t,y] = ode23('lotka',[t0 tfinal],y0);

plot(t,y)
where the function lotka.m should be saved as a separate file:

function yp = lotka(t,y)
$LOTKA Lotka-Volterra predator-prey model.



% Copyright 1984-2002 The MathWorks, Inc.
% SRevision: 5.7 $ S$Date: 2002/04/15 03:33:21 $

yp = diag([l.1 - .07*y(2), -1.3 + .02*y(1l)])*y;

end

12. Modify the initial values and parameters of the Lotka-Volterra model in order
to best fit the empirical data from figure 1. Consider:

a. (Average) peak heights of numbers of predators and prey.
b. (Average) peak widths.

c. Period of the oscillations.

d. Phase shift.

13. Compare the output of your best fit quantitatively to the empirical data of
figure one. Consider:

a. The phase shift between predator and prey population peaks.

b. The values of maxima and minima, including stochastic variations and
their possible causes.

c. Period of the oscillation, including stochastic variations and their possible
causes.

As we see very clearly by comparing the observed data to our deterministic
model, stochastic fluctuations in the numbers of lynxes and hares play a big role,
on top of the big oscillations predicted by the deterministic model. In the next
section, we will study a stochastic model that takes into account an important
part of these stochastic fluctuations.

V.1. Gillespie algorithm - Introduction

In the previous section, we have modeled the predator-prey system by a set of
deterministic differential equations, without stochastic fluctuations. Changes in
the populations were calculated by using average rates for the whole population,
such as the average birth rate at which foxes catch rabbits and the average birth
rate of rabbits.

However, we did not take into account that the populations of foxes and rabbits
actually consist of individuals: The foxes do not continuously catch small
portions of rabbit - instead, every now and then a fox catches a rabbit, and
sometimes they do not manage to catch a rabbit over a long time. Similarly, every
now and then a number of rabbits are born.

These important stochastic effects are taken into account in discrete stochastic
algorithms such as the Gillespie algorithm. In this algorithm, all events (such as
birth of a rabbit) have a given probability per unit time. For example, the
probability that a rabbit is born during a short time period At equals ax - At. N.B.



There is a big difference from the deterministic simulation given by eq. 5, where
the number of rabbits born during a time period At equals ax - At. For example,
instead of a continuous decrease of 0.25 foxes per hour, in the Gillespie
algorithm, the probability that a fox dies during the next hour is one in four.

This stochastic effect makes a huge difference, especially if the population size is
small. Consider the extreme case that only one fox is present. According to the
Gillespie algorithm, the fox will either die, survive or get offspring during the
next time step. However, in the differential equation model, a small fraction of
the fox will die during the next time step whereas another fraction of the fox will
get offspring, such that we will end up with for example 1.03 or 0.98 foxes, which
clearly is incorrect.

V.2. Intermezzo: Poisson process
A process that has a constant probability per unit time (or constant “rate”) is
called a Poisson process. Some examples:

* The probability that a fox passes away from the population during a short
time interval At (i.e. much shorter than the average time between two
deaths) is proportional to the duration of the time interval. If we wait
twice as long, the probability will be twice as large.

* Radioactive decay: in a short time interval (i.e., much shorter than the
decay time), the probability that a nucleus decays is proportional to the
duration of the time interval.

* Inaservice center, the probability to get an incoming phone call in a short
waiting time (i.e., much shorter than the average time between two calls)
is proportional to the waiting time.

For a Poisson process with a rate 4, the probability p(k) for a number of k events
happening in a time t is given by:

e_lt(lt)k

p(k) = P(X = k) = <-4 Y

It is a good exercise to prove this on a rainy day! But for the Gillespie algorithm,
we actually only need the probability that no event has happened in a time t.

14. Show that the probability that no event has happened during a time ¢ is given
by: p(0) = P(X = 0) = e~

15. Explain that the probability P(X = 0) that no event has happened during a
time t is equal to the probability P(T > t) that the first event happens at time ¢t or
later.

16. Show that the cumulative distribution function for the time t of the first event
isgivenby F(t) = P(T <t) =1—e~*,

A very elegant method (and the most direct) for drawing a random number from
a given distribution f(x) is as follows:



Take a uniformly distributed random number from the interval [0, 1], and input
it into the inverse of the cumulative distribution function F-1(x).

17. Show that the inverse cumulative distribution function of f(t) is given by
F71(t) = %ln (ﬁ) starting from exercise 16.

Okay, we have our result: In order to sample a time duration until of the next
event of a Poisson process with a rate constant 4, we simply feed a uniformly

distributed random number r from the interval [0, 1] into %ln (%)

N.B. It is easy to understand that we just as well can use r instead of 1-r for a
uniformly distributed random number in [0,1] - compare to exercise 17.

18. Draw 5 next event times for a Poisson process of rate constant A =1 s~ ! and

5 next event times for a Poisson process of rate constant A = 1 minute™?.

V.3. The Gillespie algorithm

Now that we know how to handle Poisson processes, we return to the Gillespie
algorithm. We will, w.l.o.g., consider the following set of events:

X = 2% Birth of a prey; rate: ax (8)
B .

X+y-y Consumption of a prey; rate: fxy (9)

y 5 (0] Death of a predator; rate: yy (10)

S
y = 2y Birth of a predator; rate: dxy (11)

The total rate at which an event takes place is simply given by the sum of the rates

Tiot = X + fxy +yy + 6xy. If all four events would on average occur once a month, the
total rate for any event would be four per month. This is what we use in the Gillespie
algorithm: We use the total rate r;; in order to sample the next event time.

Next, we only need to find out which of the four possible events will take place. This is
straightforward: The probability for each event to happen is proportional to its rate. We
can for example draw a uniformly distributed random number from [0,1]. Next, we

subtract ra—x If the result is less than zero, we pick the corresponding event, “birth of
tot

prey”. If not, we next subtract ? If the result is less than zero, we pick the
tot

corresponding event, “consumption of a prey”, and so on.
We are now prepared for the full Gillespie scheme:

1. Initialization: Initialize the number of predator and prey animals in the
system as well as the rate constants.



2. Monte Carlo step: Generate a random number r and determine the time
. . . 1, (1 . .
interval to the next reaction with t“e"tzi In ( ) Next, determine which

T
event will take place by the method described above.

3. Update: Increase system time by the randomly generated time tnex in
step 2. Update the numbers of predator and prey animals based on the
event that occurred.

4. Iterate: Go back to Step 2 unless there are no more predator and

prey animals, or until the simulation time has been exceeded.

19. Download the MATLAB directory ssa from the server. Modify the file
example.m as follows:

function lotka volterra

tspan = [0, 200]; %seconds
x0 = [20, 200]; %foxes, rabbits
stoich matrix = [ 0 1 $rabbit birth

0 -1 ; %rabbit eaten by fox
-1 0 ; %fox death
1 0 ]; %fox birth

% Rate constants

p-kRBirth = 1.1;

p.kFEatsR = 0.01;

p.kFDeath = 1.3;

p.kFBirth = 0.06;

% Run simulation

$[t,x] = directMethod(stoich matrix, @propensities 2state, tspan, xO0,
p);

[t,x] = firstReactionMethod(stoich matrix, @propensities 2state,

tspan, x0, p);

% Plot time course
figure(gcf);

stairs(t,x);

set(gca, 'XLim',tspan);
x1lim([0 307])

ylim([O0 400])

xlabel('time (s)');

ylabel( 'numbers');
legend({'foxes', 'rabbits'});

end

function a = propensities 2state(x, p)
foxes = x(1);
rabbits = x(2);

a = [p.kRBirth*rabbits;
p.kFEatsR*foxes*rabbits;
p-kFDeath*foxes;
p.kFEatsR*foxes*rabbits];
end

20. Run the system and compare the result to the deterministic Lotka-Volterra
simulation.
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21. Modify the rate constants in order to best fit the experimentally observed
data of figure 1.

22.a. How can you explain that:
i. the number of prey animals sometimes goes to zero?
ii. the number of prey animals sometimes keeps growing exponentially?
b. Why can the number of prey animals not go to zero when the Lotka-
Volterra differential equations are applied?

As we have seen, the Gillespie algorithm only deals with integer numbers of
animals, in contrast to the Lotka-Volterra system of differential equations. In
addition, we are able to simulate stochastic fluctuations in the populations of
predator and prey animals by applying the Gillespie algorithm.

However, one important aspect that is neither taken into account by the Lotka-
Volterra equations, nor by the Gillespie algorithms, is the effect of spatial
variations in the population density of predator and prey animals. In reality,
spatial fluctuations play a major role in the predator-prey system. You will learn
more about this by running your own agent-based simulation of a predator-prey
system.

VI. Classification of simulation methods

Model Dimensions Discrete / Stochastic or
continuous deterministic
Differential 0D (no space) | - Continuous time Deterministic
equations - Continuous numbers
of animals
Gillespie 0D (no space) | - Continuous time Stochastic

(but event-driven)
- Discrete numbers of

animals
Agent-based 2D lattice - Discrete time Stochastic
lattice model - Discrete space

VIL Further reading
- Chapter 7.7
- Chapter 8.1, 8.2,8.3,8.5, 8.6, 8.8.
- Chapter9.1,9.2,9.3
- Chapter 12.5

VIII. Some important exercises:

8.12-13 (Student’s t distribution)
9.2 (confidence interval Student’s t distribution)
12.8 (confidence interval for a correlation coefficient)
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