Bayes' Law Calculations with Dependent Events

Prof Hans Georg Schaathun

Høgskolen i Ålesund

1st April 2014

Problem

- Two events A, B
- Many probabilities of interest
 - \bullet P(A), P(B)
 - P(A|B), P(B|A)
 - \bullet $P(A \cap B)$
- Generally, some are easy to find intuitively
- Others are difficult
- Fortunately, they are all linked
- How do we find one from the others?

Bayes Law

$$P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A|B) \cdot P(B) + P(A|\neg B) \cdot P(\neg B)}$$

aka. Bayes' Equation or Bayes' Rule

Basic Rule #1

Joint Probability

$$P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$$

Basic Rule #2

Decomposing one probability into conditional ones

$$P(A) = P(A|B) \cdot P(B) + P(A|\neg B) \cdot P(\neg B)$$

Bayes Law

- $P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$
- $P(A) = P(A|B) \cdot P(B) + P(A|\neg B) \cdot P(\neg B)$
- Rearranging and combining the two equations, we get Bayes' equation
- First, note that:
 - $P(A \cap B) = P(B|A) \cdot [P(A|B) \cdot P(B) + P(A|\neg B) \cdot P(\neg B)]$
 - $P(A \cap B) = P(A|B) \cdot P(B)$
- Bayes' Rule:

$$P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A|B) \cdot P(B) + P(A|\neg B) \cdot P(\neg B)}$$

Summary

- Two basic rules about conditional probabilities
 - $P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$
 - $P(A) = P(A|B) \cdot P(B) + P(A|B) \cdot P(B)$
- Bayes' Rule:

$$P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A|B) \cdot P(B) + P(A|B) \cdot P(B)}$$