Independent and Dependent Events

A Simple Example with Independent Events

Prof Hans Georg Schaathun

Høgskolen i Ålesund

1st April 2014

The Coin Toss

We shall toss two coins

What is the probability of getting head twice?

Probability Distribution

Probability Distribution

Coin 2

Probability Distribution

Coin 1

Throwing two Coins

Coin 1

Coin 2

Probability Theory

- Four events: (i = 1, 2)
 - H_i: Coint i is Head
 - T_i: Coint i is Tail
- Consider the probability distribution of Coin 2
 - $P(H_2) = 0.5$
 - $P(H_2|H_1) = 0.5$
 - $P(H_2|T_1) = 0.5$

The question was what is the probability of getting head on both coins?

- Two heads means $H_1 \cap H_2$
- The events H_1 and H_2 are independent.
 - Therefore $P(H_1 \cap H_2) = P(H_1) \cdot P(H_2) = 0.25$

5/6

Summary

- Conditional Probability
 - P(A|B) the probability of A, assuming that B occurred
- Independent events
 - if $P(A|B) = P(A|\neg B)$, then A and B are independent events
- When A and B are independent
 - The joint probability $P(A \cap B) = P(A) \cdot P(B)$