---
title: Tensorflow for Reinformcement Learning
categories: session
---
**Slides** [rl-3.pdf]()
## Task 1 - Tensorflow/Keras
We will start today with getting used to tensorflow/keras, you can also adapt the exercises to pytorch or similar if prefered (but code-examples will be given in tensorflow).
First, install tensorflow:
```bash
pip install tensorflow
```
We will only be using the Keras API, you can find the documentation [here](https://www.tensorflow.org/guide/keras/sequential_model)
Verify in python with:
```python
import tensorflow as tf
print(tf.__version__)
```
### Part A - Perceptron
We can make a single perceptron with keras like this:
```python
from tensorflow import keras
from tensorflow.python.keras.layers import Dense
model = tf.keras.Sequential([
Dense(units=1, input_dim=1)
])
```
and do a forward propagation with:
```python
import numpy as np
model(np.array([[5]])) # For x = 5
```
Furthermore, we can get and set the current weights with:
```python
# Get weights
model.layers[0].get_weights()
# Set weights (TODO: replace w1 and b1)
model.layers[0].set_weights([np.array([[w1]]), np.array([b1]))
```
**Tasks/Questions**
- Test out different values for the weight and bias
- How do you forward-propogate multiple values at once?
- Can you plot the graph for some range of inputs?
## Task 2 - Q-Values from an ANN
We still want to work with Q-values, meaning that we would like some value for all possible actions as output from our neural network. Our FrozenLake environment has 4 possible actions, and we already know the q-values for all possible states, making it easy to fit a neural network.
### Part A - Creating a network
The following code will create a neural network that inputs a state (one value) and outputs 4 values (one for each action), it will also assume 16 possible states (0-15):
```python
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.python.keras.layers import Dense
x_data = np.linspace(0, 15, 16)
normalizer = keras.layers.Normalization(input_shape=[1,], axis=None)
normalizer.adapt(np.array(x_data))
model = keras.Sequential([
normalizer,
Dense(64, activation='relu'),
Dense(64, activation='relu'),
Dense(4)
])
model.compile(
optimizer=tf.optimizers.Adam(learning_rate=0.001),
loss='mse'
)
```
Some of this code can be safely ignored (normalization and the compile method).
**Tasks/Questions**
- What is the design of this neural network?
### Part B - Training
As we already have Q-Values, let us train the network on the data:
```python
y_data = np.array([
[0.54, 0.53, 0.53, 0.52],
[0.34, 0.33, 0.32, 0.50],
[0.44, 0.43, 0.42, 0.47],
[0.31, 0.31, 0.30, 0.46],
[0.56, 0.38, 0.37, 0.36],
[0., 0., 0., 0.],
[0.36, 0.2, 0.36, 0.16],
[0., 0., 0., 0.],
[0.38, 0.41, 0.40, 0.59],
[0.44, 0.64, 0.45, 0.40],
[0.62, 0.50, 0.40, 0.33],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0.46, 0.53, 0.74, 0.50],
[0.73, 0.86, 0.82, 0.78],
[1, 1, 1, 1]
])
model.fit(
x_data,
y_data,
epochs=50000,
verbose=0)
```
**Tasks/Questions**
- Test out the forward propagation, are the values similar to what you expect from a Q-table?
- Plot the utility given optimal play.
### Part C - FrozenLake
Given the model trained above and an optimal policy (argmax of output), can you move around the environment/solve the problem?
## Task 3 - DQN
Given exercises from last week, we now only need an implementation of a replay-buffer to implement a DQN (Deep Q-network) agent. The replay-buffer needs two methods, one to store experiences (state, action, reward, next_state), and one to sample from the replay-buffer.
**Implement these two methods**
## Task 4 - MountainCar
Until now we have been working on the FrozenLake environment. Try to solve the [MountainCar](https://www.gymlibrary.ml/environments/classic_control/mountain_car/) environment using techniques we have learned in this course. I will update this page with a DQN-solution later (hopefully before the end of the day).