External Threats

Information Security

Hans Georg Schaathun

University of Surrey

Autumn 2011 - Week 11

Outline

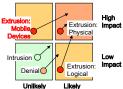
Session objectives

After this session, the student will

- have an overview of external threats and associated vulnerabilities.
- be familiar with the operation of intrusion detection systems

From IAM to Entitlement

Why Worry?:


Security Environment 2005 > 2009

Changing Threats < Creates Loss Covert Phishing 2005 Overt < Created Noise Worms Untargeted Targeted Target Industries Banks High Defence Profit Pharma Retail Low Farming Profit

Changing Perpetrators

Changing Means

SHARED AT WHITE: PUBLIC Copyright © 2006 Eli Lilly and Company Limited

www.cs.surrey.ac.uk

Low IT Use

High IT Use

Outline

Demilitarised Zone (DMZ)

What do we mean be a Demilitarized Zone? Firstly, non-IT case.

- Demilitarized not actively controlled by any party
- Buffer zone.
 - pull back to defend core realm
 - keep away from border to avoid provocation

Demilitarised Zone (DMZ)

What do we mean be a Demilitarized Zone? Firstly, non-IT case.

- Demilitarized not actively controlled by any party
- Buffer zone.
 - pull back to defend core realm
 - keep away from border to avoid provocation

- Network segment under limit security control
- Why do we have a DMZ?
- Need to offer public services
 - thus requiring reduced controls
- Placing such services in DMZ,
 - we can maintain tight controls on main LAN.
- Classic perimeter thinking
 - Inner castle walls, for invitees only
 - Outer courtyard is a public place
 - just monitored and guarded

- Network segment under limit security control
- Why do we have a DMZ?
- Need to offer public services
 - thus requiring reduced controls
- Placing such services in DMZ,
 - we can maintain tight controls on main LAN.
- Classic perimeter thinking
 - Inner castle walls, for invitees only
 - Outer courtyard is a public place
 - just monitored and guarded

- Network segment under limit security control
- Why do we have a DMZ?
- Need to offer public services
 - thus requiring reduced controls
- Placing such services in DMZ,
 - we can maintain tight controls on main LAN.
- Classic perimeter thinking
 - Inner castle walls, for invitees only
 - Outer courtyard is a public place
 - just monitored and guarded

- Network segment under limit security control
- Why do we have a DMZ?
- Need to offer public services
 - thus requiring reduced controls
- Placing such services in DMZ,
 - we can maintain tight controls on main LAN.
- Classic perimeter thinking
 - Inner castle walls, for invitees only
 - Outer courtyard is a public place
 - just monitored and guarded

Risk analysis versus DMZ

What role would DMZ take in a risk model/risk analysis?

- Different risk profiles
- DMZ
 - very exposed high probability of loss
 - limited assets limited loss magnitude
- inner LAN
 - unexposed limited probability of loss
 - all assets are present very high potential loss magnitude

Why not have more than two profiles?

Risk analysis versus DMZ

What role would DMZ take in a risk model/risk analysis?

- Different risk profiles
- DMZ
 - very exposed high probability of loss
 - limited assets limited loss magnitude
- inner LAN
 - unexposed limited probability of loss
 - all assets are present very high potential loss magnitude

Why not have more than two profiles?

Risk analysis versus DMZ

What role would DMZ take in a risk model/risk analysis?

- Different risk profiles
- DMZ
 - very exposed high probability of loss
 - limited assets limited loss magnitude
- inner I AN
 - unexposed limited probability of loss
 - all assets are present very high potential loss magnitude

Why not have more than two profiles?

Outline

9/1

Intrusion detection systems

- Intrusion Detection Systems (IDS)
 - passive devices monitors and alerts
- Network-based IDS (NIDS)
 - monitors all traffic on a subnet or across a boundary
- Host-based IDS (HIDS)
 - monitors data and processes on a single host
- Intrusion Prevention Systems (IPS)
 - active devices
 - IDPS: detection and prevention

Outline

Where is the device?

Network-Based IDS (NIDS)

- A NIDS is usually a dedicated device on the network.
- Could it alternatively run on a router or gateway?
- Independent passive device is invisible to attackers.
- Controls on a router might be vulnerable to attacks on the router

Where is the device?

Network-Based IDS (NIDS)

- A NIDS is usually a dedicated device on the network.
- Could it alternatively run on a router or gateway?
- Independent passive device is invisible to attackers.
- Controls on a router might be vulnerable to attacks on the router

Location in the network

Where do you place the device to control your network?

- Most obvious choice is close to gateway
- Monitoring all traffic into and out of the LAN
- May also need monitoring of internal

Location in the network

Where do you place the device to control your network?

- Most obvious choice is close to gateway
- Monitoring all traffic into and out of the LAN
- May also need monitoring of internal

Location in the network

Where do you place the device to control your network?

- Most obvious choice is close to gateway
- Monitoring all traffic into and out of the LAN
- May also need monitoring of internal

How do you connect the device?

Network-Based IDS (NIDS)

How do you place your NIDS to monitor all traffic?

- Problem : Switches.
- Switches do not flood the network
 - a NIDS connected directly to a switch will be in the dark
- Some switches have a monitoring port for this purpose
 - but may not be able to keep up with all the traffic
 - yet, it may be the best solution.
- It is easier with a hub ...

How do you connect the device?

Network-Based IDS (NIDS)

How do you place your NIDS to monitor all traffic?

- Problem : Switches.
- Switches do not flood the network
 - a NIDS connected directly to a switch will be in the dark
- Some switches have a monitoring port for this purpose
 - but may not be able to keep up with all the traffic
 - yet, it may be the best solution.
- It is easier with a hub ...

How do you connect the device?

Network-Based IDS (NIDS)

How do you place your NIDS to monitor all traffic?

- Problem : Switches.
- Switches do not flood the network
 - a NIDS connected directly to a switch will be in the dark
- Some switches have a monitoring port for this purpose
 - but may not be able to keep up with all the traffic
 - yet, it may be the best solution.
- It is easier with a hub ...

TCP/IP
Application
Link/Physical Layer

TCP/IP malformed protocol stacks
Application
Link/Physical Layer

TCP/IP malformed protocol stacks

Application unexpected behaviour, imporper use, excessive fragmentation

Link/Physical Layer

TCP/IP malformed protocol stacks

Application unexpected behaviour, imporper use, excessive fragmentation

Link/Physical Layer wireless: scanners, rogue devices, misconfigured devices, impersonation, DoS, unusual use

Advantages of NIDS

- Good control with few devices (and careful placement)
- Passive devices causing little or no disruption
- Not usually susceptible to direct attack; may not even be detectible

Limitations of NIDS

- May be overwhelmed by traffic and miss attacks
- Difficult to achieve complete monitoring (because of switches)
- Cannot analyse encrypted contents
- Can hardly distinguish between successful and failed attacks
- Some attacks are difficult to detect (such as packet fragmentation)

Outline

What can be detected?

Host-based IDS

- Changes is most straight-forward
- Monitor the system state
 - system files, executable files
- Report all changes
 - manual review to filter authorised changes
- Basic integrity check

What can be detected?

Host-based IDS

- Changes is most straight-forward
- Monitor the system state
 - system files, executable files
- Report all changes
 - manual review to filter authorised changes
- Basic integrity check

Colour Coding

Red system registry, OS config, OS kernel, application software

Yellow device drivers; other relatively important files

Green user data

What is special about the red files compared to green ones?

Advantages of HIDS

- Detects local events some would elude the NIDS
- Can access traffic after decryption
- Never kept in the dark by switches
- Can detect incosistencies after the network traffic is complete; e.g. a Trojan horse

Disadvantages of HIDS

- Most be managed host by host
- Vulnerable to attacks
 - direct attacks
 - attacks on the host
 - some DoS attacks
- Sees only a single host; no multi-host awareness
- Performance overhead and disk usage

Signature Based

- Searches for characteristics known attacks
- Maintains a database of such signatures or patterns
- Reliable detection of known attacks
- Poor or no detection of new and unknown attacks

Statistical Anomaly

- Builds a statistical model of normal activity
- Flags events which do not fit the model
- No information about known attacks is used
 - unknown attacks are detected as well as known ones.

Stateful Protocol Analysis

- Observe execution of network protocols (e.g. FTP)
- What do we mean by stateful?
- Stateless analysis considers individual messages
 - can detect malformed messages
 - but not messages out of place
- Stateful analysis follows the protocol
 - messages out of place may be detected

Note! State is a concept worth spending time on.

Stateful Protocol Analysis

- Observe execution of network protocols (e.g. FTP)
- What do we mean by stateful?
- Stateless analysis considers individual messages
 - can detect malformed messages
 - but not messages out of place
- Stateful analysis follows the protocol
 - messages out of place may be detected

Note! State is a concept worth spending time on.

Stateful Protocol Analysis

- Observe execution of network protocols (e.g. FTP)
- What do we mean by stateful?
- Stateless analysis considers individual messages
 - can detect malformed messages
 - but not messages out of place
- Stateful analysis follows the protocol
 - messages out of place may be detected

Note! State is a concept worth spending time on.

Response strategies

• Attack detected — now what?

What would you suggest?

Alert system administrator

- Email message
- Pop-up windows
- Phone/SMS
- Audible/visual alarm
- Log entry

Reconfigure gateway/firewall

- Drop external link last resort only
 - what happens in the event of a DoS attack?
- Add packet filtering (port/IP/structure/contents)
 - · complex task in the event of distributed attacks
- Close session (TCP close)

Other countermeasures

- No limitation
 - Arbitrary programs may be run
 - Arbitrary messages to other devices
- Start more sophisticated IDS (in spite of overhead)
- Collect evidentiary documentation
- Counterattack
 - Trace or criple
 - Could very well be illegal
 - Could also harm an innocent third party

Questions

- What is a honey pot?
- Why do we use them?

Honey pots

- Decoy systems
- Attract attackers to dummy assets
- May allow
 - Diverting an attack from the real system
 - Collect information about attacks and attackers
 - Trace attackers and possibly respond
- The attacker cannot know that it is not the real system

Padded cells

- Tandom of a hardened honey pot and an IDPS
- When IDPS detects an attack
 - divert it into a dummy replica of the system

Padded Cells

Advantages

- Attacker diverted can do know harm
- Buys time to decide on response
- Monitoring refines the threat analysis
- Effective against snooping insiders

Padded cells

Disadvantages

- Unclear legal position
- Not yet proved themselves commercial tools are very recent
- May provoke attacks or aggravate attacks
- Expert sys admin required

Summary

- Three technologies covered
 - DMZ
 - IDPS
 - Honey pots
- Especially DMZ and IDPS are becoming standard

