Software Security
Information Security

Prof Hans Georg Schaathun
University of Surrey/Alesund University College

Autumn 2011 — Week 12

UNIVERSITY OF

Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 1/1

Security or Useability

@ This chapter is largely about software bugs

o Is this security?
@ ...oris it useability?

@ Answer is yes

e Bugs are user (programmer) mistakes — useability.
e Many bugs cause security vulnerabilities.

@ Useability is a prerequisite of security.

{ UNIVERSITY OF

Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 4/1

Session objectives

@ Be familiar with the most common implementation errors leading
to security vulnerabilities

@ Start developing a good methodology for secure design and
implementation

@ 2010 CWE/SANS Top 25 Most Dangerous Software Errors
@ Robert Seacord: Secure Coding in C and C++

@ https://www.securecoding.cert.org/confluence/
display/seccode/Top+10+Secure+Coding+Practices

UNIVERSITY OF

Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 3/1

Common Weakness Enumeration

@ 2010 CWE/SANS Top 25 Most Dangerous Software Errors
@ http://cwe.mitre.org/top25/index.html

@ A very few key vulnerabilities behind most incidents
@ Massive benefit from controlling the top few

_ UNIVERSITY OF

Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 6/1

https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
http://cwe.mitre.org/top25/index.html

Top 9 Trusting Input

@ Improper neutralisation of input during web page generation

(Cross-Site Scripting) Most of the top vulnerabilities relate to user input ...

@ Improper neutralisation of Special Elements in SQL Commands
(SQL Injection) @ Cross-Site Scripting
© Buffer overflow without Checking of Input Size @ SQL Injection
© Cross-Site Request Forgery @ Reliance on Untrusted Input
© Improper Access Control (Authorisation) @ File upload
© Reliance on Untrusted Inputs in a Security Decision @ Path traversal
@ Improper Limitation of a Pathname to a Restricted Directory (Path @ Special elements in OS commands
Traversal)
© Unrestricted Upload of File with Dangerous Type Integrity of Code and Data ...
© Improper neutralisation of Special Elements used in an OS e C vesrror
Command % SURREY 9 SURREY
Software Security Autumn 2011 —Week 12 7/1 Software Security Autumn 2011 —Week 12 8/1
Top 9 Input Checking

@ Improper neutralisation of input during web page generation
(Cross-Site Scripting)

@ Improper neutralisation of Special Elements in SQL Commands @ 4 out of 9 vulnerabilities

(SQL Injection) e very similar instances of input checking
© Buffer overflow without Checking of Input Size ® E.G. SQL injection

. @ SELECT % FROM users WHERE name=’John’ ;

© Cross-Site Request Forgery @ Now, say the user enters a name, instead of using ’ John’
© Improper Access Control (Authorisation) o SELECT % FROM users WHERE name—’S$n’ ;
© Reliance on Untrusted Inputs in a Security Decision @ What if the user enters
@ Improper Limitation of a Pathname to a Restricted Directory (Path @ Mary’ ; DROP TABLE users ; ... '

Traversal) o What happens?
© Unrestricted Upload of File with Dangerous Type
© Improper neutralisation of Special Elements used in an OS

{ UNIVERSITY OF _ UNIVERSITY OF

Command

Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 10/1 Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 11/1

What may happen What should happen

SELECT x FROM users WHERE name=’'Mary’ ; DROP TABLE

SELECT % FROM users WHERE name='"Mary’’ ; DROP TABLE
users ; ... rr

users ; ... rr
@ We select user Mary, and then drop the table

e Successful availability attack — the table is destroyed

@ The string delimiter (') in the input
o allows the user to terminate the string (which was expected)
e and add another command (which was not expected)

@ The special character is escaped
e and treated as part of the string

@ The offending Command is now part of the name
e and not harmful

"~ UNIVERSITY OF " UNIVERSITY OF
Software Security Autumn 2011 — Week 12 12/1 Software Security Autumn 2011 — Week 12 13/1
Cross-Site Scripting Path traversal

http://www.phpnuke.org/user.php?op=userinfo&uname=
<script>alert (document.cookie) ;</script>

@ Malicious code passed as an HTTP GET argument @ Say you allow uploading and downloading of files.

@ Principle as before o the user specifies the filename
e adirectory is hardcoded and prepended

@ so the user enters foobar. jpeg
@ it becomes /opt/archive/foobar. jpeg
e safe enough

@ What if the userenters ../../etc/passwd?

@ No input checking in the web page

@ causes execution of code from the user
@ No limit to what this can achieve
@ Other web pages (other sites)

@ can hide code actually loading the URL
@ no user interaction at all

Source: http://www.cgisecurity.com/xss—faq.html

UNIVERSITY OF UNIVERSITY OF

Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 14/1 Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 15/1

http://www.phpnuke.org/user.php?op=userinfo&uname=<script>alert(document.cookie);</script>
http://www.phpnuke.org/user.php?op=userinfo&uname=<script>alert(document.cookie);</script>
http://www.cgisecurity.com/xss-faq.html

Dangerous Filenames

@ Some systems deduce file type from filename
e e.g. . jpg for JFIF/EXIF images
@ e.g. = .php for PHP scripts
@ Dangerous: the filename is under user control
@ Allows user to mark data as code and vice versa
@ E.g. uploaded files on a web server

e do you allow the users to upload PHP scripts?
@ might your server execute them?

UNIVERSITY OF

Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 16/1
Input Checking

The rlogin bug

@ rlogin(1) used to allow remote login access to Unix systems
@ rlogin [-1luser] hostname

@ The rlogin client contacts a remote host which runs login(1)
e Running rlogin -1 csslhs kyle, would
@ ...on kyle, cause the running of login csslhs.

@ Now, login(1) has many uses,
@ login —froot is a forced login (as root)
@ ... no password prompt

@ rlogin -1 -froot kyle —what happens?

@ login -froot — superuser login without password
e Unused functionality is exploited.
@ ... unless rlogin sanitises the input

UNIVERSITY OF

Prof Hans Georg Schaathun

Software Security Autumn 2011 — Week 12 18/1

Passing information to external programs

Improper neutralisation of Special Elements used in an OS
Command

@ Calling external programs is high risk
o library calls is lower risk
e Why is this?

@ library calls provide type checking

o external programs take arguments as strings
e ... control codes and data are mixed

UNIVERSITY OF

Software Security Autumn 2011 — Week 12
What to do?

@ Two methods (principles):

@ Input checking: reject unexpected input
@ Sanitising: accept the input, make sure it is handled correctly
(escaping)

@ Which is easiest? Which is best?

@ Restrictive Input Checking
err on the side of caution
relatively simple — accept a small set of safe inputs
availability risk (reject good input)
e good incidence response allow quick bug fixes
@ Sanitising requires comprehensive understanding

@ how to sanitise
e what is the effect of each possible input?
e the SQL example cannot be solved by input checking

@ O’Brian is a valid name ...

Prof Hans Georg Schaathun

Software Security Autumn 2011 — Week 12

17/1

UNIVERSITY OF

19/1

Management nformation
Good practice Decision Making

@ Take a critical view of all input
e Don't trust anyone
© Have a firm understanding of what the input should look like
e don’t accept odd input
© Be aware of any special characters where the data is used
e be wary of quotation marks (’/"), backslashes, control characters

Reliance on Untrusted Inputs in a Security Decision.

@ Decision Making depends on Information
@ Where does this information come from?
@ What CODIT Criteria are essential for this information?

etc. o Integrity
e special scenarios like slashes in filenames o Reliability of Management Information
© Don't use user input if you do not have to @ Can your adversaries have forged information?
e e.g. filenames can be generated by the system @ Are your decissions steered by your enemy?

© Spend some time on every instance of user input

~ UNIVERSITY OF "~ UNIVERSITY OF
Software Security Autumn 2011 — Week 12 20/1 Software Security Autumn 2011 — Week 12 22/1
Untrusted Inputs in a Security Decision Quick Summary
@ What controls can you use against this?
e Technical
@ Unlikely — Intelligent Input needed to choose trusted sources @ Decissions are based on Information
o Operational @ ensure reliability and integrity of this information
@ Yes — good operational information gathering
e Managerial
@ Yes — choose trust policy
UNIVERSITY OF UNIVERSITY OF

Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 23/1 Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 24 /1

The lat hree of the nine
Top 9

@ Improper neutralisation of input during web page generation
(Cross-Site Scripting)

(SQL Injection)

Buffer overflow without Checking of Input Size
Cross-Site Request Forgery

Improper Access Control (Authorisation)

Reliance on Untrusted Inputs in a Security Decision

Traversal)
Unrestricted Upload of File with Dangerous Type
Improper neutralisation of Special Elements used in an OS

00 00000 O

Improper neutralisation of Special Elements in SQL Commands

Improper Limitation of a Pathname to a Restricted Directory (Path

UNIVERSITY OF

Command 3 SURREY

Prof Hans Georg Schaathun

Software Security

The ast e of the rine
Why is this code insecure?

bool IsPasswordOkay (void) {
char Password[12] ;

gets (Password) ;
if (!strcmp(Password, "goodpass")) return true ;
else return (false) ;

}

void main(void) {
bool PwStatus ;

puts ("Enter_password:") ;

PwStatus = IsPasswordOkay () ;

if (PwStatus == false) {
puts ("Access _denied") ;
exit (—=1) ;

!

else puts ("Access_granted") ;

Autumn 2011 — Week 12

25/1

UNIVERSITY OF

} ¥ SURREY

Autumn 2011 — Week 12

Prof Hans Georg Schaathun

Software Security

27/1

The last three of the nine
Buffer Overflows

@ Classic problem
@ Limited memory buffer

e writing unlimited data objects — often user input
o system does not check the buffer limits

@ Clever attackers can

e overwrite executable code
@ inserting custom code to be executed

UNIVERSITY OF

Prof Hans Georg Schaathun

Software Security Autumn 2011 — Week 12

The last three of the nine
Cross-Site Request Forgery (CSRF)

like the stranger in the airport, asking you to take just this
parcel along on the flight ...

@ Web vulnerability

e trick a user’s client to make your request
e request made with his credentials

@ Integrity problem
o Attackers can forge requests

@ The attacker can gain all the priviliges of the user

Autumn 2011 — Week 12

Prof Hans Georg Schaathun

Software Security

26/1

K UNIVERSITY OF

28/1

The last three of the nine
Improper Access Control

@ Fairly obvious — restrict access to authorised users
@ But, get the roles right

e should match business roles
@ The exercise for next week explores management of

@ access
e privileges
e identity

~ UNIVERSITY OF

Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 29/1

DefaultDeny
Default Deny

or principle of least privilege

@ Default Deny is a General Principle with many Applications

@ Access Control
e Input Validation
o Feature Selection

@ Advantage: prevents unnecessary integrity/confidentiality risks
@ accepting risks only when necessary

@ Disadvantage: availability risk
e Mitigation by incident respons — bug fix

UNIVERSITY OF

Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 32/1

Coding Practices

Seacord’s 10 Principles

@ Validate input
@ Heed compiler warnings

@ Architect and design for security policies.

@ Keep it simple.
@ Default deny.

@ Adhere to the principle of least privilege.

@ Sanitize data sent to other systems.

@ Practice defense in depth.

@ Use effective quality assurance techniques.

@ Adopt a secure coding standard.

Prof Hans Georg Schaathun

Coding Practices Default Deny

Input Checking

Default deny

@ Defining harmful inputs is

Software Security

hard

@ Defining correct input is easier

@ Default deny will reject the input when in doubt

@ Note that the SQL exampl

€,

e the input is both valid and harmful

e that’s why you need sanitisation as well

@ You can overdo it

e many webpages validate email addresses

e and reject the plus sign

@ The plus sign is valid according to the RFC

(+)

~ UNIVERSITY OF

Autumn 2011 — Week 12

e and has a very important function in non-MS mail servers

Prof Hans Georg Schaathun

Software Security

31/1

UNIVERSITY OF

Autumn 2011 — Week 12

33/1

Defaut Deny
Example: path names

Default deny in input validation

@ Suppose you write an application, where users upload files

e The user can specify a filename, e.g. holiday.jpg,
@ ... and you prepend a directory name, e.g. /public/images/

@ How can this be exploited?
@ Suppose the users use filename /../../etc/passwd.
@ How do we avoid this?
@ Input checking is possible;
e ../is anillegal substring.

~ UNIVERSITY OF

Prof Hans Georg Schaathun

Software Security Autumn 2011 — Week 12

Defaul Deny
Unicode encoding

@ Each byte has a prefix
e 0 —one-byte character
110 — first byte of two-byte character
1110 — first byte of three-byte character
11110 — first byte of four-byte character
10 — second or later byte of multi-byte character

@ Remaining bits contain a unicode character number
1 byte : 7 bits
2 bytes : 11 bits (5+6)
3 bytes : 16 bits (4+6+6)
4 bytes : 21 bits (3+6+6+6)
@ Only shortest possible representation is legal
e but illegal representations are often accepted

34/1

UNIVERSITY OF

Autumn 2011 — Week 12

Prof Hans Georg Schaathun

Software Security

36/1

Deauit Deny
Character Encoding

Vulnerabilities in Unicode

@ Unicode collects characters for (almost) every language
@ UTF-8 is the most common encoding of Unicode

@ Variable length characters
e ASCII (American 7-bit character set) uses one byte
@ Ensuring compatibility.
o Western European (non-ASCII) characters use two bytes
e More exotic characters require 3 or 4 bytes

~ UNIVERSITY OF

Prof Hans Georg Schaathun

Software Security Autumn 2011 — Week 12 35/1

DefaultDeny
Exploiting it

@ Your application bans filenames containing ../
@ But there are many ways to write /
e /is Unicode 00101111

1 byte : 00101111

2 byte : 11000000 10101111

3 byte : 11100000 10000000 10101111

4 byte : 11110000 10000000 10000000 10101111

@ So if your system accepts multi-byte forms,

@ ... your input checking has to ban all representations of /.
@ Default deny makes it easier
@ Accept only the canonical form

UNIVERSITY OF

Prof Hans Georg Schaathun

Software Security Autumn 2011 — Week 12 37 /1

Defaut Deny
Canonical Representation

@ UTF-8 is an example of the use of canonical representations
@ Several equivalent forms are defined

@ Only the shortest form is canonical

@ Before a safe comparison can be made

@ ...data should be converted into canonical form

~ UNIVERSITY OF

Software Security Autumn 2011 — Week 12 38/1
Conclusions

@ Secure coding is an essential part of software development
o relatively new field
@ The Top 25 Vulnerabilities database is a good source

e avoid the Top 5 and you will be better than average ...
e the list is updated regularly — check the latest version

@ Practices may vary between languages
e try to look up a book for whatever language you use

UNIVERSITY OF

Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12 41/1

Defat Deny
Example: Napster filenames

@ Napster was ordered by court to block certain songs
@ Solutions
o filter downloads based on filename
@ Napster users by-passed this control
@ using equivalent (variations of) the song titles
@ Almost impossible to control
o title equivalence is defined by the users...

@ Blatant breakdown of ‘Default Permit’

~ UNIVERSITY OF

Prof Hans Georg Schaathun Software Security Autumn 2011 — Week 12

39/1

