
Software Security
Information Security

Prof Hans Georg Schaathun

University of Surrey/Ålesund University College

Autumn 2011 – Week 12

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 1 / 1

The session

Session objectives

Be familiar with the most common implementation errors leading
to security vulnerabilities
Start developing a good methodology for secure design and
implementation

2010 CWE/SANS Top 25 Most Dangerous Software Errors
Robert Seacord: Secure Coding in C and C++

https://www.securecoding.cert.org/confluence/
display/seccode/Top+10+Secure+Coding+Practices

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 3 / 1

The session

Security or Useability

This chapter is largely about software bugs
Is this security?
. . . or is it useability?

Answer is yes
Bugs are user (programmer) mistakes – useability.
Many bugs cause security vulnerabilities.

Useability is a prerequisite of security.

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 4 / 1

Top Vulnerabilities

Common Weakness Enumeration

2010 CWE/SANS Top 25 Most Dangerous Software Errors
http://cwe.mitre.org/top25/index.html

A very few key vulnerabilities behind most incidents
Massive benefit from controlling the top few

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 6 / 1

https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
http://cwe.mitre.org/top25/index.html

Top Vulnerabilities

Top 9

1 Improper neutralisation of input during web page generation
(Cross-Site Scripting)

2 Improper neutralisation of Special Elements in SQL Commands
(SQL Injection)

3 Buffer overflow without Checking of Input Size
4 Cross-Site Request Forgery
5 Improper Access Control (Authorisation)
6 Reliance on Untrusted Inputs in a Security Decision
7 Improper Limitation of a Pathname to a Restricted Directory (Path

Traversal)
8 Unrestricted Upload of File with Dangerous Type
9 Improper neutralisation of Special Elements used in an OS

Command

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 7 / 1

Top Vulnerabilities

Trusting Input

Most of the top vulnerabilities relate to user input ...

Cross-Site Scripting
SQL Injection
Reliance on Untrusted Input
File upload
Path traversal
Special elements in OS commands

Integrity of Code and Data ...

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 8 / 1

Input Checking

Top 9

1 Improper neutralisation of input during web page generation
(Cross-Site Scripting)

2 Improper neutralisation of Special Elements in SQL Commands
(SQL Injection)

3 Buffer overflow without Checking of Input Size
4 Cross-Site Request Forgery
5 Improper Access Control (Authorisation)
6 Reliance on Untrusted Inputs in a Security Decision
7 Improper Limitation of a Pathname to a Restricted Directory (Path

Traversal)
8 Unrestricted Upload of File with Dangerous Type
9 Improper neutralisation of Special Elements used in an OS

Command

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 10 / 1

Input Checking

Input Checking

4 out of 9 vulnerabilities
very similar instances of input checking

E.G. SQL injection
SELECT * FROM users WHERE name=’John’ ;

Now, say the user enters a name, instead of using ’John’
SELECT * FROM users WHERE name=’$n’ ;

What if the user enters
Mary’ ; DROP TABLE users ; ... ’

What happens?

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 11 / 1

Input Checking

What may happen

SELECT * FROM users WHERE name=’Mary’ ; DROP TABLE
users ; ... ’’

We select user Mary, and then drop the table
Successful availability attack — the table is destroyed

The string delimiter (’) in the input
allows the user to terminate the string (which was expected)
and add another command (which was not expected)

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 12 / 1

Input Checking

What should happen

SELECT * FROM users WHERE name=’Mary’’ ; DROP TABLE
users ; ... ’’

The special character is escaped
and treated as part of the string

The offending Command is now part of the name
and not harmful

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 13 / 1

Input Checking

Cross-Site Scripting

http://www.phpnuke.org/user.php?op=userinfo&uname=
<script>alert(document.cookie);</script>

Malicious code passed as an HTTP GET argument
Principle as before
No input checking in the web page

causes execution of code from the user

No limit to what this can achieve
Other web pages (other sites)

can hide code actually loading the URL
no user interaction at all

Source: http://www.cgisecurity.com/xss-faq.html

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 14 / 1

Input Checking

Path traversal

Say you allow uploading and downloading of files.
the user specifies the filename
a directory is hardcoded and prepended

so the user enters foobar.jpeg
it becomes /opt/archive/foobar.jpeg
safe enough

What if the user enters ../../etc/passwd?

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 15 / 1

http://www.phpnuke.org/user.php?op=userinfo&uname=<script>alert(document.cookie);</script>
http://www.phpnuke.org/user.php?op=userinfo&uname=<script>alert(document.cookie);</script>
http://www.cgisecurity.com/xss-faq.html

Input Checking

Dangerous Filenames

Some systems deduce file type from filename
e.g. *.jpg for JFIF/EXIF images
e.g. *.php for PHP scripts

Dangerous: the filename is under user control
Allows user to mark data as code and vice versa
E.g. uploaded files on a web server

do you allow the users to upload PHP scripts?
might your server execute them?

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 16 / 1

Input Checking

Passing information to external programs

Improper neutralisation of Special Elements used in an OS
Command

Calling external programs is high risk
library calls is lower risk
Why is this?

library calls provide type checking
external programs take arguments as strings
... control codes and data are mixed

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 17 / 1

Input Checking

The rlogin bug

rlogin(1) used to allow remote login access to Unix systems
rlogin [-luser] hostname

The rlogin client contacts a remote host which runs login(1)
Running rlogin -l css1hs kyle, would
. . . on kyle, cause the running of login css1hs.

Now, login(1) has many uses,
login -froot is a forced login (as root)
... no password prompt

rlogin -l -froot kyle – what happens?
login -froot – superuser login without password
Unused functionality is exploited.
... unless rlogin sanitises the input

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 18 / 1

Input Checking

What to do?

Two methods (principles):
1 Input checking: reject unexpected input
2 Sanitising: accept the input, make sure it is handled correctly

(escaping)

Which is easiest? Which is best?
Restrictive Input Checking

err on the side of caution
relatively simple — accept a small set of safe inputs
availability risk (reject good input)
good incidence response allow quick bug fixes

Sanitising requires comprehensive understanding
how to sanitise
what is the effect of each possible input?
the SQL example cannot be solved by input checking

O’Brian is a valid name ...

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 19 / 1

Input Checking

Good practice

1 Take a critical view of all input
Don’t trust anyone

2 Have a firm understanding of what the input should look like
don’t accept odd input

3 Be aware of any special characters where the data is used
be wary of quotation marks (’/"), backslashes, control characters
etc.
special scenarios like slashes in filenames

4 Don’t use user input if you do not have to
e.g. filenames can be generated by the system

5 Spend some time on every instance of user input

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 20 / 1

Other Issues Management Information

Decision Making

Reliance on Untrusted Inputs in a Security Decision.

Decision Making depends on Information
Where does this information come from?
What CObIT Criteria are essential for this information?

Integrity
Reliability of Management Information

Can your adversaries have forged information?
Are your decissions steered by your enemy?

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 22 / 1

Other Issues Management Information

Untrusted Inputs in a Security Decision

What controls can you use against this?
Technical

Unlikely – Intelligent Input needed to choose trusted sources
Operational

Yes – good operational information gathering
Managerial

Yes – choose trust policy

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 23 / 1

Other Issues Management Information

Quick Summary

Decissions are based on Information
ensure reliability and integrity of this information

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 24 / 1

Other Issues The last three of the nine

Top 9

1 Improper neutralisation of input during web page generation
(Cross-Site Scripting)

2 Improper neutralisation of Special Elements in SQL Commands
(SQL Injection)

3 Buffer overflow without Checking of Input Size
4 Cross-Site Request Forgery
5 Improper Access Control (Authorisation)
6 Reliance on Untrusted Inputs in a Security Decision
7 Improper Limitation of a Pathname to a Restricted Directory (Path

Traversal)
8 Unrestricted Upload of File with Dangerous Type
9 Improper neutralisation of Special Elements used in an OS

Command

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 25 / 1

Other Issues The last three of the nine

Buffer Overflows

Classic problem
Limited memory buffer

writing unlimited data objects – often user input
system does not check the buffer limits

Clever attackers can
overwrite executable code
inserting custom code to be executed

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 26 / 1

Other Issues The last three of the nine

Why is this code insecure?
bool IsPasswordOkay (void) {

char Password [1 2] ;

gets (Password) ;
i f (! strcmp (Password , " goodpass ")) return t r ue ;
else return (f a l s e) ;

}

void main (void) {
bool PwStatus ;

puts (" Enter password : ") ;
PwStatus = IsPasswordOkay () ;
i f (PwStatus == f a l s e) {

puts (" Access denied ") ;
e x i t (−1) ;

}
else puts (" Access granted ") ;

}

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 27 / 1

Other Issues The last three of the nine

Cross-Site Request Forgery (CSRF)

like the stranger in the airport, asking you to take just this
parcel along on the flight ...

Web vulnerability
trick a user’s client to make your request
request made with his credentials

Integrity problem
Attackers can forge requests

The attacker can gain all the priviliges of the user

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 28 / 1

Other Issues The last three of the nine

Improper Access Control

Fairly obvious – restrict access to authorised users
But, get the roles right

should match business roles
The exercise for next week explores management of

access
privileges
identity

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 29 / 1

Coding Practices

Seacord’s 10 Principles

Validate input
Heed compiler warnings
Architect and design for security policies.
Keep it simple.
Default deny.
Adhere to the principle of least privilege.
Sanitize data sent to other systems.
Practice defense in depth.
Use effective quality assurance techniques.
Adopt a secure coding standard.

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 31 / 1

Coding Practices Default Deny

Default Deny

or principle of least privilege

Default Deny is a General Principle with many Applications
Access Control
Input Validation
Feature Selection

Advantage: prevents unnecessary integrity/confidentiality risks
accepting risks only when necessary

Disadvantage: availability risk
Mitigation by incident respons → bug fix

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 32 / 1

Coding Practices Default Deny

Input Checking
Default deny

Defining harmful inputs is hard
Defining correct input is easier
Default deny will reject the input when in doubt
Note that the SQL example,

the input is both valid and harmful
that’s why you need sanitisation as well

You can overdo it
many webpages validate email addresses
and reject the plus sign (+)

The plus sign is valid according to the RFC
and has a very important function in non-MS mail servers

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 33 / 1

Coding Practices Default Deny

Example: path names
Default deny in input validation

Suppose you write an application, where users upload files
The user can specify a filename, e.g. holiday.jpg,
... and you prepend a directory name, e.g. /public/images/

How can this be exploited?
Suppose the users use filename /../../etc/passwd.
How do we avoid this?
Input checking is possible;

../ is an illegal substring.

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 34 / 1

Coding Practices Default Deny

Character Encoding
Vulnerabilities in Unicode

Unicode collects characters for (almost) every language
UTF-8 is the most common encoding of Unicode
Variable length characters

ASCII (American 7-bit character set) uses one byte
Ensuring compatibility.

Western European (non-ASCII) characters use two bytes
More exotic characters require 3 or 4 bytes

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 35 / 1

Coding Practices Default Deny

Unicode encoding

Each byte has a prefix
0 – one-byte character
110 – first byte of two-byte character
1110 – first byte of three-byte character
11110 – first byte of four-byte character
10 – second or later byte of multi-byte character

Remaining bits contain a unicode character number
1 byte : 7 bits
2 bytes : 11 bits (5+6)
3 bytes : 16 bits (4+6+6)
4 bytes : 21 bits (3+6+6+6)

Only shortest possible representation is legal
but illegal representations are often accepted

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 36 / 1

Coding Practices Default Deny

Exploiting it

Your application bans filenames containing ../
But there are many ways to write /

/ is Unicode 0010 1111
1 byte : 0010 1111
2 byte : 1100 0000 1010 1111
3 byte : 1110 0000 1000 0000 1010 1111
4 byte : 1111 0000 1000 0000 1000 0000 1010 1111

So if your system accepts multi-byte forms,
... your input checking has to ban all representations of /.
Default deny makes it easier

Accept only the canonical form

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 37 / 1

Coding Practices Default Deny

Canonical Representation

UTF-8 is an example of the use of canonical representations
Several equivalent forms are defined
Only the shortest form is canonical
Before a safe comparison can be made
. . . data should be converted into canonical form

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 38 / 1

Coding Practices Default Deny

Example: Napster filenames

Napster was ordered by court to block certain songs
Solutions

filter downloads based on filename
Napster users by-passed this control

using equivalent (variations of) the song titles
Almost impossible to control

title equivalence is defined by the users...

Blatant breakdown of ‘Default Permit’

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 39 / 1

Closure

Conclusions

Secure coding is an essential part of software development
relatively new field

The Top 25 Vulnerabilities database is a good source
avoid the Top 5 and you will be better than average ...
the list is updated regularly — check the latest version

Practices may vary between languages
try to look up a book for whatever language you use

Prof Hans Georg Schaathun Software Security Autumn 2011 – Week 12 41 / 1

