Revision c5c1a99111274471c854342b012b60fbfaf35011 (click the page title to view the current version)

Change of Basis

Reading Ma 2004 Chapter 2.2-2.3

Motion examples

  1. Translation \[\vec{x}' = \vec{x}+\vec{t}\]
  2. Rotation \[\vec{x}' = \vec{x}\cdot R\]
    • But note that \(R\) is not an arbitrary matrix.
    • We’ll return to the restrictions
Handdrawn illustration
Handdrawn illustration

Definition: Rigid Body Motion

  1. 3D Object is a set of points in \(\mathbb{R}^3\)
  2. If the object moves, the constituent points move
  3. The points have to move so that they preserve the shape of the object

Constraints

Let \(\vec{X}(t)\) and \(\vec{Y}(t)\) be the coordinates of points \(\vec{x}\) and \(\vec{x}\) at time \(t\).

  1. Preserve distance between points
    • \(||\vec{X}(t)-\vec{Y}(t)||\) is constant
  2. Preserve orientation
    • i.e. avoid mirroring
    • we have to preserve cross-products
    • If the right hand rule turns into a left hand rule, we have had mirroring.

Let \(u=\vec{X}-\vec{Y}\) be a vector, and \(g_*(u)=g(\vec{X})-g(\vec{Y})\) the corresponding vector after motion.

Preserving the cross-product means \[g_*(u)\times g_*(v) = g_*(u\times v), \forall u,v\in\mathbb{R}^3\]

Change of Basis

Bases

  1. Basis aka. frame
    • Unit vectors: \(\vec{e}_1\), \(\vec{e}_2\), \(\vec{e}_3\)
  2. The meaning of a tuple to denote a vector
    • \(\vec{x}=[x_1,x_2,x_3]= x_1\cdot\vec{e}_1+x_2\cdot\vec{e}_2+x_3\cdot\vec{e}_3\)
  3. Orthonormal frame: orthogonal and unit length \[\vec{e}_i\vec{e}_j=\delta_{ij} = \begin{cases} 1 \quad\text{if } i=j\\ 0 \quad\text{if } i\neq j \end{cases} \]

Local and Global Basis

  1. 3D Scenes are built hierarchically
  2. Each object is described in a local basis
    • and then placed in the global basis.
  3. Why?
    • Save computational work
    • Local changes affect only local co-ordinates
    • Component motion independent of system motion

Example

E.g. our co-ordinates: 62°28’19.3“N 6°14’02.6”E

Are these local or global co-ordinates?

Rotation

Consider common origin first.