Revision 87ebdd104da8a98e8d020abc18f8260922dc40d7 (click the page title to view the current version)
Changes from 87ebdd104da8a98e8d020abc18f8260922dc40d7 to c5c1a99111274471c854342b012b60fbfaf35011
---
title: Change of Basis
categories: 3D lecture
---
**Reading** Ma 2004 Chapter 2.2-2.3
# Motion examples
1. Translation
$$\vec{x}' = \vec{x}+\vec{t}$$
1. Rotation
$$\vec{x}' = \vec{x}\cdot R$$
- But note that $R$ is not an arbitrary matrix.
- We'll return to the restrictions
![Handdrawn illustration](Images/motion.png)
# Definition: Rigid Body Motion
1. 3D Object is a set of points in $\mathbb{R}^3$
2. If the object moves, the constituent points move
3. The points have to move so that they preserve the shape of the object
## Constraints
Let $\vec{X}(t)$ and $\vec{Y}(t)$ be the coordinates of
points $\vec{x}$ and $\vec{x}$ at time $t$.
1. Preserve distance between points
+ $||\vec{X}(t)-\vec{Y}(t)||$ is constant
1. Preserve orientation
+ i.e. avoid mirroring
+ we have to preserve cross-products
+ If the right hand rule turns into a left hand rule,
we have had mirroring.
Let $u=\vec{X}-\vec{Y}$ be a vector, and
$g_*(u)=g(\vec{X})-g(\vec{Y})$ the corresponding vector after
motion.
Preserving the cross-product means
$$g_*(u)\times g_*(v) = g_*(u\times v), \forall u,v\in\mathbb{R}^3$$
# Change of Basis
## Bases
1. Basis aka. frame
+ Unit vectors: $\vec{e}_1$, $\vec{e}_2$, $\vec{e}_3$
2. The meaning of a tuple to denote a vector
+ $\vec{x}=[x_1,x_2,x_3]= x_1\cdot\vec{e}_1+x_2\cdot\vec{e}_2+x_3\cdot\vec{e}_3$
3. Orthonormal frame: orthogonal and unit length
$$\vec{e}_i\vec{e}_j=\delta_{ij} =
\begin{cases}
1 \quad\text{if } i=j\\
0 \quad\text{if } i\neq j
\end{cases}
$$
## Local and Global Basis
1. 3D Scenes are built hierarchically
2. Each object is described in a local basis
+ and then placed in the global basis.
3. Why?
+ Save computational work
+ Local changes affect only local co-ordinates
+ Component motion independent of system motion
## Example
E.g. our co-ordinates: 62°28'19.3"N 6°14'02.6"E
Are these local or global co-ordinates?
## Rotation
Consider **common origin** first.