Revision 086f79831b54505585058f7f2b3deb2eee6a54b0 (click the page title to view the current version)

Overview

Changes from 086f79831b54505585058f7f2b3deb2eee6a54b0 to current

---
title: Lecture Notes - AIS2204 Maskinsyn
categories: Module
---

# Chapter 1-2. Introduction and 3D Modelling (two weeks)
**Note** The lecture plan as posted at the start of semester is last
year's schedule.  There will not be any revolutionary changes, but
it will be reviewed and amended as we go along.

# Chapter 1-3. Introduction; 3D geometry and projections

| # | Session Notes | Reading | Keywords |
|---|---------------|-------------------|-----------------------------|
| 1 | [Introduction]() | Ma 2004:Ch 1 (Ch 2.1 and 2.3)  | Practical matters. Software installation. Reap of linear algebra. |
| 2 | [3D Modelling]() | Ma 2004:Ch 2, App A (SZ 2) | 3D modelling, motion |
| 3 | [3D Objects in Python]() | Tutorials | 3D Transformations in Python |
| 4 | [3D Modelling Part II]() | | Velocity transformations.  Recap.  Questions. | 
**Dates** 21, 24, 28, and 31 August, and 4 and 7 September

# Chapter 3. Image Formation (two weeks)
| # | Session Notes | Reading | Keywords | Status |
|---|---------------|-------------------|-----------------------------|-----|
| 1 | [Introduction]()         | Ma 2004:Ch 1 (Ch 2.1 and 2.3) | Practical matters. Software installation. Recap of linear algebra. | OK |
| 2 | [3D Modelling]()         | Ma 2004:Ch 2, App A (SZ 2)   | 3D modelling, motion | OK |
| 3 | [3D Objects in Python]() | Tutorials                    | Homogeneous co-ordinates.  General Rotations. 3D Transformations in Python | OK |
| 4 | [Image Formation]()    | Ma 2004:Ch 3-3.3.1 (SZ 6) | (self-study) projection, lens/camera | |
| 5 | [Camera Calibration]() | Ma 2004:Ch 3.3-3.3.3 | (self-study) Calibration, Radial Distortion etc. |
| 6 | [Three-week Recap]()   | Ma 2004:Ch 1-3 | 3D Motion and 2D Projections |  To be adapted to class need|
| 7 | Recap: [Camera Calibration]() | Ma 2004:Ch 3 | | Many students needed more time to get the calibration to work.  |

| # | Topic  | Reading | Keywords |
|---|---------------|-------------------|-----------------------------|
| 5 | [Image Formation]()    | Ma 2004:Ch 3-3.3.1 (SZ 6) | projection, lens/camera |
| 6 | [Camera Mathematics]() | Ma 2004:Ch 3.3-3.4        | Calibration, Radial Distortion etc. |
| 7 | [Distortion in Practice]() | [Calibration in OpenCV](https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html) | Radial Distortion, Tangential Distortion |
| 8 | [Programming with OpenCV]() | ?? | videos, **TBD** |
**Note** It could have been useful to do a session on Theorem 2.8, training proof
reading skills.

+ Session 5-8
    - Projection from 3D to 2D image
    - Calibrate camera
# Chapter 4. Feature Tracking

# Chapter 4. Feature Tracking (two weeks)
We need to interleave this with material from later blocks to have
project tracker run over midterm.
[Study Technique]() may be a good candidate.

**Keywords** Signal Processing, 2D
| # | Topic  | Reading | Keywords | Status |
| -: | :- |  :- |  :- |  :- | 
| 8 (14 Sep) | [Image Filters]() | Convolution.  Filters.  Blurring. | |
| 9 | [Corner Detection]() | Ma 2004:Ch 4.3, 4.A (SZ 4) | Calculate Gradient.  Harris Feature Detector. | |
| 10 (21 Sep) | [Tracking Features]() |  Ma 2004:Ch 4-4.2 | Tracking of Features. Tracking of Edges. | |
| 11 | [SIFT]() | | Feature Matching.  Feature Descriptor. | |
| 12 (28 Sep) | [Edges]() | Ma 2004:Ch 4.4 | Canny, connected components, line fitting | |
| 13 | [Colour]() Models |
| 14 (5 Oct) | [Relative Pose]() | Ma 2004:Ch 5.1 | Triangulation. Relative Pose. Essential Matrix. |
| 15  | [Project Tracker]() | | [Multiscale Detection]() | |
| 16 (12 Oct) | *Self-Study* | Continue with [Tracking Features]() | - | - |
| 17 | Recap      | | Status, review, repetition | |

| # | Topic  | Reading | Keywords |
|---|---------------|-------------------|-----------------------------|
| 1 | [Corner Detection]() | Ma 2004:Ch 4.3, 4.A (SZ 4) | Calculate Gradient.  Harris Feature Detector. |
| 2 | [Corner Detection in Python]() | 
| 3 | [Tracking Features]() | Ma 2004:Ch 4-4.2 | Tracking of Features. Tracking of Edges. |
| 4 | [Tracking Features in Python]() |
# Chapter 5. Projective Reconstruction 

| # | Topic  | Reading | Keywords | Status |
|---|---------------|-------------------|-----------------------------| -: |
| 18 (19 Oct) | [Eight-point algorithm]() | Ma 2004:Ch 5.2 | Calculate Essential Matrix | OK |
| 19 | [Study Technique]() | Ma 2004:Ch 5.1 | Proof reading. | OK |
| 20 (26 Oct) | [Planar Scenes]()| Ma 2004:Ch 5.3 | | 
| 21 (30 Oct) | [Epipolar Geometry]()| Ma 2004:Ch 5.1-3 | |
| 22 | self study [3D Reconstruction]()  | Ma 2004:Ch 5.1-2 |  Continuous on 18 [Eight-point algorithm]() using real image data |  OK |

+ OpenCV/Python Tutorial
    - Background: [Understanding Features](https://docs.opencv.org/master/df/d54/tutorial_py_features_meaning.html)
    - [Harris Corner Detection](https://docs.opencv.org/master/dc/d0d/tutorial_py_features_harris.html)
    - Overview
      [Feature Detection and Description](https://docs.opencv.org/master/db/d27/tutorial_py_table_of_contents_feature2d.html)
+ Ma 2004 Chapter 11.1-2.
# Chapter X.  Machine Learning

| #  | Topic         | Reading | Keywords |
|----|---------------|-------------------|-----------------------------|
| 23-24 | [Neural Networks]() | Szeliski 2022 Chapter 5 | Training. Testing |
| 25 | [Statistics]() |  | Evaluation, Standard Deviation |
| 26 | [Object Detection]() | Szeliski 2022 Chapter 6 (6.3 in particular) | Object Detection |
| 27 | [Regression]() | | |
| 28 | [Distorted Space]() + Recap  | Ma 2004:Ch 6.1-2 | Questions; Answers; module evalutaiton | 

# Chapter 5.  Projective Reconstruction (two weeks)

**Keywords** 3D, projection

## 2-1

+ Ma 2004 Chapter 5

1. The Epipolar plain
1.  Eight-point algorithm

## 2-2

1. Ma 2004 Chapter 5
# Other Material.

## 2-3
+ [Overview of Python Demoes](Python/Overview)
+ The material is under constant review.  
    + Any feedback is welcome.
    + Existing notes for [Review]()

1. Ma 2004 Chapter 11.3.
# Old Material.

# Project 3.  Euclidean Reconstruction
| # | Topic  | Reading | Keywords |
|---|---------------|-------------------|-----------------------------|
| 24/2021 | [Stratified Reconstruction]() | Ma 2005:Ch 6.3-4  | |
| 25/2021 | [Partial Scene Information]() | Ma 2005:Ch 6.5  | |
| 26/2021 | [Real World Reconstruction]() | Ma 2004:Ch 11 |  |
| 27/2021 | [Continuous Motion]() | Ma 2004:Ch 5.4 | |

1. Ma 2004 Chapter 10.  Partial Scene Knowledge
    - This is referenced as a building block in Chapter 11.
1. Ma 2004 Chapter 11.4.
1. Ma 2004 Chapter 11.5.  **Keywords** texture, visualisation

# Chapter 6.  Reconstruction from two Uncalibrated views (two weeks)

**Keywords** 3D, calibration, projection

# Chapter 11. System Architecture (one week?)

# Visualisation (one week?)

**Keywords** texture, visualisation

1. Ma 2004 Chapter 11.5.

# Chapter 10.  Partial Scene Knowledge (one week?)

This is referenced as a building block in Chapter 11.