Revision ca74468973458085c1b0ec3276774908662fd9f9 (click the page title to view the current version)

Overview

Changes from ca74468973458085c1b0ec3276774908662fd9f9 to 6cc10450efa4f4142a1fc9c5c03a5d25c6335681

---
title: Lecture Notes - AIS2204 Maskinsyn
categories: Module
---

# Chapter 1-2. Introduction and 3D Modelling (two weeks)

**Dates** 25-26 August + 1-2 September

| # | Session Notes | Reading | Keywords | Status |
|---|---------------|-------------------|-----------------------------|-----|
| 1 | [Introduction]()         | Ma 2004:Ch 1 (Ch 2.1 and 2.3) | Practical matters. Software installation. Recap of linear algebra. | OK |
| 2 | [3D Modelling]()         | Ma 2004:Ch 2, App A (SZ 2)   | 3D modelling, motion | OK |
| 3 | [3D Objects in Python]() | Tutorials                    | Homogeneous co-ordinates.  General Rotations. 3D Transformations in Python | OK |
| 4 | [3D Modelling Part II]() |                              | Velocity transformations.  Recap.  Questions. |  To be adapted to class |

# Chapter 3. Image Formation (two weeks)

| # | Topic  | Reading | Keywords | Status |
|---|---------------|-------------------|-----------------------------|------|
| 5 | [Image Formation]()    | Ma 2004:Ch 3-3.3.1 (SZ 6) | projection, lens/camera | OK |
| 6 | [Camera Calibration]() | Ma 2004:Ch 3.3-3.3.3 | Calibration, Radial Distortion etc. | OK |
| 7 | [More Camera Mathematics]() | Ma 2004:Ch 3.3-3.4 | Radial Distortion, Tangential Distortion | OK |

**Dates** 8-9 and 15 September

# Chapter 4. Feature Tracking (three weeks)

(Last year's session numbers in parentheses.)

| # | Topic  | Reading | Keywords | Status |
|---|---------------|-------------------|-----------------------------|----|
| 8 (new) | [Image Filters]() | | Convolution.  Filters.  Blurring. | OK |
| 9 (8-9) | [Corner Detection]() | Ma 2004:Ch 4.3, 4.A (SZ 4) | Calculate Gradient.  Harris Feature Detector. | OK |
| 10 | [Tracking Features]() |  Ma 2004:Ch 4-4.2 | Tracking of Features. Tracking of Edges. | OK |
| 11 (new)  | [Project Tracker]() | | **new** Lecture [Multiscale Detection]() | OK |
| 12 (16) | [SIFT]() | | Feature Matching.  Feature Descriptor. | OK |
| 13-14 | *Self-Study* | Continue with [Tracking Features]() | - | - |
| 15 (11) | Recap      | | Status, review, repetition | |
| 16 (11) | [Edges]() | Ma 2004:Ch 4.4 | Canny, connected components, line fitting | |

+ 8 - 16 September
+ 9-12 - 22-23 and 29-30 September
+ 13-14 - 6-7 October - staff seminar - self-managed work only
+ 15-16 - 13-14 October - midterm - regular teaching

# Chapter 5.  Projective Reconstruction (two weeks ?)

| # | Topic  | Reading | Keywords |
|---|---------------|-------------------|-----------------------------|
| 17 | [Relative Pose]() | Ma 2004:Ch 5.1 | Triangulation. Relative Pose. Essential Matrix. |
| 18 | [Eight-point algorithm]() | Ma 2004:Ch 5.2 | Calculate Essential Matrix |
| 19 | [Study Technique]() | Ma 2004:Ch 5.1 | Proof reading. |
| 20 | [3D Reconstruction]()  | Ma 2004:Ch 5.1-2 |  |
| 21 | [Planar Scenes]()| Ma 2004:Ch 5.3 | |
| 22 | [Epipolar Geometry]()| Ma 2004:Ch 5.1-3 | |

1.  [Study Technique]() should may be needed earlier.  We introduced some
    fragments of this in 2022, but should possibly do more of it.
3.  [Relative Pose]() is a little messy.  It serves covers two things.
    - triangulation is poorly covered in the textbook and the notes,
      but the students need a recap from basic calculus
    - the essential matrix is preparation for the next session.
4.  Generally, the preliminary steps of the exploratory exercises should
    have been premade, to save time for the students.
    We have made some improvements in 2022, but we should do more.
5.  Algorithm implementation is difficult and require sample solutions.
    Some have been added in 2022, but may have to be incorporated earlier
    in the course.
6.  We need more examples with complete calculations

# New.  Machine Learning

| #  | Topic         | Reading | Keywords |
|----|---------------|-------------------|-----------------------------|
| 23-24 | [Neural Networks]() | Szeliski 2022 Chapter 5 | Training. Testing |
| 25 | [Statistics]() |  | Evaluation, Standard Deviation |
| 26 | 
| 26 | [Regression]() | | |

+ We should go further into [Object Recognition]() next year

# Last Week.  Summary and Miscellanea

| # | Topic  | Reading | Keywords |
|---|---------------|-------------------|-----------------------------|
| 23/2021 | [Distorted Space]()  | Ma 2004:Ch 6.1-2 |  |

# Other Material.

+ [Overview of Python Demoes](Python/Overview)

# Old Material.

| # | Topic  | Reading | Keywords |
|---|---------------|-------------------|-----------------------------|
| 24/2021 | [Stratified Reconstruction]() | Ma 2005:Ch 6.3-4  | |
| 25/2021 | [Partial Scene Information]() | Ma 2005:Ch 6.5  | |
| 26/2021 | [Real World Reconstruction]() | Ma 2004:Ch 11 |  |
| 27/2021 | [Continuous Motion]() | Ma 2004:Ch 5.4 | |

1. Ma 2004 Chapter 10.  Partial Scene Knowledge
    - This is referenced as a building block in Chapter 11.
1. Ma 2004 Chapter 11.4.
1. Ma 2004 Chapter 11.5.  **Keywords** texture, visualisation