--- title: Change of Basis categories: 3D lecture --- **Reading** Ma 2004 Chapter 2.2-2.3 # Motion examples 1. Translation $$\vec{x}' = \vec{x}+\vec{t}$$ 1. Rotation $$\vec{x}' = \vec{x}\cdot R$$ - But note that $R$ is not an arbitrary matrix. - We'll return to the restrictions ![Handdrawn illustration](Images/motion.png) # Definition: Rigid Body Motion 1. 3D Object is a set of points in $\mathbb{R}^3$ 2. If the object moves, the constituent points move 3. The points have to move so that they preserve the shape of the object ## Constraints Let $\vec{X}(t)$ and $\vec{Y}(t)$ be the coordinates of points $\vec{x}$ and $\vec{x}$ at time $t$. 1. Preserve distance between points + $||\vec{X}(t)-\vec{Y}(t)||$ is constant 1. Preserve orientation + i.e. avoid mirroring + we have to preserve cross-products + If the right hand rule turns into a left hand rule, we have had mirroring. Let $u=\vec{X}-\vec{Y}$ be a vector, and $g_*(u)=g(\vec{X})-g(\vec{Y})$ the corresponding vector after motion. Preserving the cross-product means $$g_*(u)\times g_*(v) = g_*(u\times v), \forall u,v\in\mathbb{R}^3$$ # Change of Basis ## Bases 1. Basis aka. frame + Unit vectors: $\vec{e}_1$, $\vec{e}_2$, $\vec{e}_3$ 2. The meaning of a tuple to denote a vector + $\vec{x}=[x_1,x_2,x_3]= x_1\cdot\vec{e}_1+x_2\cdot\vec{e}_2+x_3\cdot\vec{e}_3$ 3. Orthonormal frame: orthogonal and unit length $$\vec{e}_i\vec{e}_j=\delta_{ij} = \begin{cases} 1 \quad\text{if } i=j\\ 0 \quad\text{if } i\neq j \end{cases} $$ ## Local and Global Basis 1. 3D Scenes are built hierarchically 2. Each object is described in a local basis + and then placed in the global basis. 3. Why? + Save computational work + Local changes affect only local co-ordinates + Component motion independent of system motion ## Example E.g. our co-ordinates: 62°28'19.3"N 6°14'02.6"E Are these local or global co-ordinates? ## Rotation Consider **common origin** first.