--- title: Lecture: Distorted Space categories: lecture --- # Distorted Space ## What is a distorted space? 1. Consider a pixmap image with pixels $1\times2$ mm. What is the distance from origo to the points $(0,10)$, $(10,0)$, and $(\sqrt{50},\sqrt{50})\approx(7,7)$? 2. $\psi: \mathbb{R}^3 \to \mathbb{R}^3$, $\psi: \mathbb{X}\mapsto \mathbb{X}' = K\mathbb{X}$ 2. Redifining the Inner Product - $\langle\psi^{-1}(u),\psi^{-1}(v)\rangle = u^TK^{-T}K^{-1}v =\langle u,v\rangle_{K^{-T}K^{-1}} =\langle u,v\rangle_{S}$ - where $S=K^{-T}K^{-1}$ 4. Norm $||u||_S=\sqrt{\langle u,u\rangle}$ 4. This gives rise to a **distorted space** - angles are different - norms are different ## 3D Motion in Distorted Space 1. Movement in canonical space: $X = RX_0+T$ 2. Co-ordinates in uncalibrated camera frame - before: $X_0' = KX_0$ - after: $X' = KX = KRX_0 + KT = KRK^{-1}X_0' + T'$ - where $T'=KT$ 3. Thus the movement in distorted (uncalibrated) space is $(R',T') = (KRK^{-1},KT)$ ## Conjugate Matrix Group 1. The set of all Euclidean motions: $\mathsf{SE}(3)=\{(R,T)|R\in\mathsf{SO}(3), T\in\mathbb{R}^3\}$ 2. Conjugate of $\mathsf{SE}(3)$ $$G' = \bigg\{ g' = \begin{bmatrix} KRK^{-1} & T'\\0&1\end{bmatrix} \bigg|R\in\mathsf{SO}(3), T\in\mathbb{R}^3\bigg\}$$ 3. *Note commutative diagram in Fig 6.3 in the textbook* ## Image Formation 1. Calibrated (5.1) $\lambda x = \Pi_0X$ 1. Uncalibrated (6.1) $\lambda x' = K\Pi_0gX_0$ - $g$ is camera pose - $K$ is camera calibration matrix - $\Pi_0$ is the projection (as before) 2. $\lambda x' = KRX_0 + KT$ - **abuse of notation!** we switch between homogeneous and non-homogeneous co-ordinates 4. $\lambda x' = KRK^{-1}KX_0 + KT$ 5. Rewriting in uncalibrated co-ordinates: - $\lambda x'=KRK^{-1}X'_0 + T' = \Pi_0g'X_0'$ # Uncalibrated Epipolar Geometry Two views by the same camera. This gives one and the same calibration matrix $K$ for both views. + **Recall** the calibrated case $$x_2^TEx_1 = 0$$ where $E=\hat TR$ + In the uncalibrated case, this becomes $$x_2'^TK^{-T}\hat TRK^{-1}x_1' = 0$$ by substituting $x=K^{-1}x'$ + We define the **fundamental matrix** $$F = K^{-T}\hat TRK^{-1}$$ + In a perfect camera, $K=I$ and $F=E$ + It can be shown that $$F = \hat T' KRK^{-1}$$ by invoking Lemma 5.4, but we'll have to take this on trust.