--- title: Homogeneous Coordinates categories: lectures 3D mathematics geometry: margin=2cm fontsize: 12pt --- # Homogenous Co-ordinates ## Six degrees of Freedom + Translation - add $T=[y_1,y_2,y_3]$ + Rotation - multiply by $\exp(\hat{[\omega_1,\omega_2,\omega_3]})$ + $x\mapsto xR+T$ is affine, not linear ## Points in Homogenous Co-ordinates + Point $\textbf{X}=[X_1,X_2,X_3]^\mathrm{T}\in\mathbb{R}^3$ + Embed in $\mathbb{R}^4$ as $\mathbf{\tilde X}=[X_1,X_2,X_3,1]^\mathrm{T}\in\mathbb{R}^4$ + Vector $\vec{pq}$ is represented as $$\mathbf{\tilde X}(q)-\mathbf{\tilde X}(p) = \begin{bmatrix} \mathbf{ X}(q) \\ 1 \end{bmatrix} - \begin{bmatrix} \mathbf{ X}(p) \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{X}(q) - \mathbf{X}(p) \\ 0 \end{bmatrix}$$ + In homogenous co-ordinates, - points have 1 in last position - vectors have 0 in last position + Arithmetics + Point + Point is undefined + Vector + Vector is a Vector + Point + Vector is a Point ## Rotation Let $R$ be a $3\times3$ rotation matrix. $$ R\cdot\vec{x}= R \cdot \begin{bmatrix} x\\y\\z \end{bmatrix} = \begin{bmatrix} x'\\y'\\z' \end{bmatrix} $$ $$ \begin{bmatrix} R & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x\\y\\z\\1 \end{bmatrix} = \begin{bmatrix} x'\\y'\\z'\\1 \end{bmatrix} $$ ## Arbitrary motion What happens if we change some of the zeroes? $$ \begin{bmatrix} R & \vec{t} \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x\\y\\z\\1 \end{bmatrix} = \begin{bmatrix} x'\\y'\\z'\\0 \end{bmatrix} + \begin{bmatrix} \vec{t}\\1 \end{bmatrix} =R\vec{x}+\vec{t} $$ We have rotated and translated! ## Motion as a function of time $$ g = \begin{bmatrix} R & T\\ 0 & 1 \end{bmatrix} \in \mathrm{SE}(3) $$ + This is a group $$g_1\cdot g_2 = \begin{bmatrix} R_1 & T_1\\ 0 & 1 \end{bmatrix}\cdot \begin{bmatrix} R_2 & T_2\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_1R_2 & R_1T_2+T_1\\ 0 & 1 \end{bmatrix} \in \mathrm{SE}(3) $$ $$g^{-1} = \begin{bmatrix} R & T\\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} R^T & -R^TT\\ 0 & 1 \end{bmatrix} $$ # Canonical Exponential Co-ordinates 1. A homogeneous motion matrix $$ g(t) = \begin{bmatrix} R(t) & T(t)\\ 0 & 1 \end{bmatrix} $$ 2. We can differentiate, invert, and multiply to get $$ \dot g(t)\cdot g^{-1}(t) = \begin{bmatrix} \dot R(t) R^T(t) & \dot T(t)- \dot R(t)R^T(t)T(t) \\ 0 & 0 \end{bmatrix} \in\mathbb{R}^{4\times4} $$ 3. $\dot R(t) R^T(t)$ is skew-symmetric, hence $$ \dot g(t)\cdot g^{-1}(t) = \begin{bmatrix} \hat\omega & \dot T(t)- \dot R(t)R^T(t)T(t) \\ 0 & 0 \end{bmatrix} $$ for some $\omega\in\mathrm{so}(3)$ 3. Write $$ v(t)= \dot T(t)- \hat\omega(t)T(t) \\ \dot g(t)\cdot g^{-1}(t) = \begin{bmatrix} \hat\omega & \dot v(t) \\ 0 & 0 \end{bmatrix} $$ 4. Call this matrix $\hat\xi(t)$ 5. This give the differential equation $$\dot g(t) = (\dot g(t) g^{-1})g(t)$$ + $v(t)$ is linear velocity + $\omega(t)$ as angular velocity