import torch import torchvision import torchvision.transforms as transforms import torch.optim as optim import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self,dev=None): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) self.criterion = nn.CrossEntropyLoss() self.optimizer = optim.SGD(self.parameters(), lr=0.001, momentum=0.9) if dev: self.device = torch.device('cpu') else: self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print("Device:", self.device) self.to(self.device) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def getDataset(): # The transform normalises the dataset transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) batch_size = 4 # We use standard datasets provided by torchvision, in this case CIFAR10 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2) return (trainloader,testloader) def evalmodel(net,dataloader): tloss = 0.0 net.eval() for i, data in enumerate(dataloader, 0): inputs, labels = (data[0].to(net.device), data[1].to(net.device)) outputs = net(inputs) loss = net.criterion(outputs, labels) tloss += loss.item() return(tloss/len(dataloader)) def trainmodel(net,dataloader): running_loss = 0.0 tloss = 0.0 net.train() for i, data in enumerate(dataloader, 0): # get the inputs; data is a list of [inputs, labels] inputs, labels = (data[0].to(net.device), data[1].to(net.device)) # zero the parameter gradients net.optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = net.criterion(outputs, labels) loss.backward() net.optimizer.step() # print statistics running_loss += loss.item() tloss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print(f'[Training, {i + 1:5d}] loss: {running_loss / 2000:.3f}') running_loss = 0.0 return(tloss/len(dataloader))