--- title: Representations of 3D Motion categories: lectures 3D mathematics geometry: margin=2cm fontsize: 12pt --- # Representation of Rotations Consider what happens when an object rotates continuously over time, i.e. the rotational matrix is a function $R(t)$ of time. ## The derivative 1. Rotation is represented by an orthogonal matrix $R$ $$R(t)\cdot R^T(t)=I$$ 2. Implicit derivation $$\dot R(t)\cdot R^T(t)+R(t)\cdot\dot R^T(t)=0$$ 3. by transposing the product and moving one term across, we have $$\dot R(t)\cdot R^T(t) = -(\dot R(t)\cdot R^T(t))^T$$ 4. This is a skew-symmetric matrix, hence $$\exists \vec{\omega}\in\mathbb{R}^3, \text{s.t.} \dot R(t)\cdot R^T(t) = \hat\omega(t)$$ 5. Multiply by $R(t)$ to get $$\dot R(t) = \hat\omega(t)\cdot R(t)$$ 6. If $R(t_0)=I$ as an initial condition, then $\dot R(t)=\hat\omega(t)$ Note $so(3)$ is the space of all skew-symmetric matrices. ## The differential equation Let $x(t)$ be a point rotated over time. Assume that $\omega$ is constant. 1. **ODE:** $$\dot x(t) = \hat\omega x(t), \quad x(t)\in\mathbb{R}^3$$ 2. Solution: $$x(t) = e^{\hat\omega t} x(0)$$ 3. where $$e^{\hat\omega t} = I + \sum_{i=1}^\infty \frac{(\hat\omega )^i}{i!}$$ 4. The rotational matrix $$R(t)=e^{\hat\omega t}$$ signifies a rotation around the axis $\omega$ by $t$ radians. $$ \begin{align} \exp : \mathrm{so}(3)&\to\mathrm{SO}(3) \\ \hat\omega& \mapsto e^{\hat\omega} \end{align}$$ This is a map from a Lie algebra to a Lie group. + For any $R$, such an $\hat\omega$ can be found + not necessarily unique. + $\hat\omega$ is the axis of rotation + **Note** Only three degrees of freedom; since $\hat\omega$ is a 3D vector + a scalar factor can be applied to $t$ (change of unit) or to $\hat\omega$ + useful to normalise $\hat\omega$ to unit norm + Rotation is obviously periodic. + A rotation by $2\pi$ is back to start. ## Logarithm *Theorem 2.8* page 27 in the textbook $$ R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \exp(\hat\omega) $$ where $$ \DeclareMathOperator{\tr}{trace} ||\omega|| = \cos^{-1}\big(\frac{\tr(R)-1}2\big) $$ and $$ \frac{\omega}{||\omega||} = \frac1{2\sin(||\omega||)} \begin{bmatrix} r_{32}-r_{23}\\ r_{13}-r_{31}\\ r_{21}-r_{12} \end{bmatrix} $$