--- title: Lecture - Stratified Reconstruction categories: lecture --- # The Camera Projection $$\lambda x = K\Pi gX$$ 1. Euclidean transformation $g$ from world frame to camera frame 1. Projection $\Pi$ from 3D to 2D 1. Camera intrinsic transformation $K$ ## Ambiguities There are three ambiguities $$\lambda x = (KR^{-1})(R\Pi H^{-1}) (H gg_w^{-1})g_wX$$ Due to the arbitrary choice of frame, $R$ and $g_w$ are inconsequential # Equivalence classes of the calibration matrix - $K$ can be chosen to be upper triangular without loss of generality - decomposition $K=QR$ where - $R$ is a rotation - $Q$ is upper triangular - The special linear group $\mathsf{SL}(3)$ - invertible matrices with determinant $+1$ - The group of rotations $\mathsf{SO}(3) < \mathsf{SL}(3)$ (subgroup) - self-orthogonal $R^{-1}=R^T$ - Equivalence classes $$\frac{\mathsf{SL}(3)}{\mathsf{SO}(3)}$$ - equivalent because they induce the same iner product $\langle\rangle_S$ - $S=K^{-T}K^{-1}$ - $(KR)^{-T}(KR)^{-1}=K^{-T}R^{-T}R^{-1}K^{-1}=K^{-T}RR^{-1}K^{-1}=K^{-T}K^{-1}=S$ - one-to-finite correspondence between $S$ and upper triangular $K$ - usually only one $K$ is a valid camera calibration matrix - We cannot distinguish $K$ from $KR_0^T$ - and $g=[R,T]$ from $\tilde g=[R_0R,R_0T]$ # Intrinsic and Extrinsic - intrinsic $K$ - extrinsic $g$ $$\Pi X = (\Pi H^{-1})(H X) = \tilde \Pi \tilde X$$ - $X$ in the true world - $\tilde X$ in the distorted world # Stratified Reconstruction - Projective $\to$ Affine $\to$ Euclidean - Decompose $$H^{-1}= \begin{bmatrix} K^{-1} & 0 \\ v^T & v_4 \end{bmatrix} = \begin{bmatrix} K^{-1} & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} I & 0 \\ v^T & v_4 \end{bmatrix} $$ - The first factor is an affine transformation - The second factor is a projective transformation - Equation 6.32 $$F\mapsto ([I,0],[\hat\tilde T^TF,\tilde T])$$