--- title: Tracking Features categories: session --- - aperture problem [page 78] # Briefing ## Corners ![Universitetsområdet i Ålesund](Images/ntnuaes1.jpg) ![Universitetsområdet i Ålesund (ny vinkel)](Images/ntnuaes2.jpg) + What are distinctive points in the image? + Distinctive points can (to some extent) be matched in two different images. [More Images](https://www.flickr.com/photos/ntnu-trondheim/collections/72157632165205007/) ## Corner Correspondence + Two images of the same scene $I_1,I_2: \Omega\subset\mathbb{R}^3\to\R_+ ; \mathbf{x}\mapsto I_1(\mathbf{x}),I_2(\mathbf{x})$ + Different in general *Why are they different?* ## Brightness Constancy Constraint + Suppose we photograph empty space except for a single point $p$ - *Brightness Constancy Constraint* $$I_1(\mathbf{x}_1) = I_2(\mathbf{x}_2) \sim \mathcal{R}(p)$$ + Simple dislocation from $\mathbf{x}_1$ to $\mathbf{x}_2$ + Problem: Globally, it is an infinite-dimentional transformation + Motion: $h: \mathbf{x}_1\mapsto\mathbf{x}_2$ + so that $I_1(\mathbf{x}_1) = I_2(h(\mathbf{x}_1)) \forall \mathbf{x}_1\in\Omega\cap h^{-1}(\Omega)\subset\mathbb{R}^{2\times2}$ ## Motion Models + Affine Motion Model: $h(\mathbf{x}_1) = A\mathbf{x}_1 + \mathbf{d}$ + Projective Motion Model: $h(\mathbf{x}_1) = H\mathbf{x}_1$ where $H\in\mathbb{R}^{3\times3}$ is defined up to a scalar factor. + Need to accept changes to the intencity ## Aperture Problem $$\hat h = \arg\min_h\sum_{\tilde\mathbf{x}\in W(\mathbf{x})} ||I_1(\tilde\mathbf x)-I_2(\tilde\mathbf x)||^2$$ + The window, or aperture, $W(\vec{x})$ + cannot distinguish points on a blank wall + Choose $h$ from a family of functions, parameterised by $\alpha$ + translational: $\alpha=\Delta\mathbf{x}$ + affine: $\alpha=\{A,\mathbf{d}\}$ ## Feature Tracking $$I_1(\textbf{x})= I_2(h(\textbf{x}))= I_2(\textbf{x}+\Delta\textbf{x})$$ + Consider infitesimally small $\Delta\textbf x$ ## Infinitesimal Model + Model on a time axis - two images taken infinitesimally close in time + ... under motion $$I(\mathbf{x}(t),t) = I(\mathbf{x}(t)+t\mathbf{u},t+dt)$$ $$\nabla I(\mathbf{x}(t),t)^\mathrm{T}\mathrm{u} + I_t(\mathbf{x}(t),t) = 0$$ $$\nabla I(\mathbf{x},t) = \begin{bmatrix} I_x(\mathbf{x},t)\\ I_y(\mathbf{x},t) \end{bmatrix} = \begin{bmatrix}\frac{\partial I}{\partial x}(\mathbf{x},t)\\ \frac{\partial I}{\partial y}(\mathbf{x},t) \end{bmatrix} \in\mathbb{R}^2$$ $$I_t(\mathbf{x},t) = \frac{\partial I}{\partial t}(\mathbf{x},t)\in \mathbb{R}$$ *Brightness Constancy Constraint* for the simplest possible continuous model + Two applications - optical flow: fix a position $\mathbf x$ and consider particles passing through - feature tracking: fix a partical $x(t)$ an track it through space ## Solving for $\textbf{u}$ $$\nabla I^\mathrm{T}\mathrm{u} + I_t = 0$$ + There are infititly many solutions, due to the *aperture problem* + We can solve for the component in the direction of the gradient though $$\frac{\nabla I^\mathrm{T}\mathrm{u}}{||\nabla I||} = - \frac{I_t}{||\nabla I||} $$ + Left hand side is the scalar projection of $\mathbf u$ onto $\nabla I$. + Multiplying by $\nabla I/||\nabla I||$, we get the vector projection: $$\mathbf u_n = \frac{\nabla I^\mathrm{T}\mathrm{u}}{||\nabla I||}\cdot\frac{\nabla I}{||\nabla I||} = - \frac{I_t}{||\nabla I||\cdot\frac{\nabla I}{||\nabla I||}} $$