Module report on FPIA

Hans Georg Schaatnun, Que Tran, Robin T. Bye

7th September 2017

The module is organised as fifteen full-day sessions on Friday. The delivery is divided
between Hans Georg (Week 1-6), Que (Week (7-9), and Robin (Week 10-14). The
fifteenth week is reserved for revision and catch-up and will be negotiated later.

1 Evaluation

Evaluation data has been gather continuously and informally. With few exceptions, each
teaching day day starts with an evaluation, asking every student to answer a few selected
questions about the learning and the activities so far. Thus the full class has served as a
reference group. Additionally, opinions are sought occassionally in chats with individual
students.

The students were asked to submit a reference group reported, but opted not to do so.
However, this report was presented to them on the last teaching day, and their remarks
have been incorporated.

2 Intermediate report Weeks 1-6
1 A Manifest

The basic learning activity for the first part of the module is the tutorial, which in our
case implies:

1. A blend of examples and exercises. Some steps are given as examples and some as
exercises.

2. Whole-task exercises. The tutorial as a whole give a full solution to a complete
and coherent problem.

3. Each individiual step in the tutorial is limited in scope, so that the students should
not take very long to solve it.

4. Progression means that we start with a bias on examples or cut-and-paste exercises
towards a bias on problems the students need to solve.



5. Some questions for discussion aim to promote reflection and deep processing.

6. Questions from the class and discussions are encouraged, also when they diverge
from the main objectives of a session.

These principles are built on cognitive load theory 7. The blending is not generally as
structured as their paired example/problems, although there are some examples of paired
problems, with the first being almost entirely cut-and-paste from the tutorial and the
second leaves some key items open for completion by the student.

Whole-task exercises are intended to demonstrate relevance of the material, which is
probably the main argument for proponents of whole-task learning and problem-based
learning. The heavy use of cut-and-paste-able steps makes it very different from what
7 call whole-task learning. The idea is to get best of both whole-task learning, worked
examples, and paired problems.

Two-way questions and discussion in class are used continuously (1) to link new mater-
ial to the students’ past experience, (2) to follow up on student ideas and encourage their
own thinking, (3) in a Vygotskian perspective, to support the development of language,
and (4) encourage collaboration and social learning.

2 Positive experience
1. The balance between practical problems and new lecture material is very good.

2. The tutorial format appears to be very effective.

3. Some students take approving note of the progression in the tutorials, which start
with a lot of cut-and-paste exercises with a gradual transition to more individual
work.

4. Online tutorials make it easy to catch up.

3 Challenges

1. The students use different operating systems, mainly Windows, and both software
installation and adaptation to non-Unix systems are hurdles which waste unne-
cessary time. Without a number of Windows wizards in class it would not have
worked.

2. Learning Hagkell and Al in the same module is challenging for the students. It
would be easier to learn Al in the context of a known programming language, and
they would also be easier to learn functional programming in a context of simpler
problems and algorithms.

3. The plenary discussions and talks have been too long in some cases. An extra effort
has been put in to reduce this from week 2 onwards.

4. Several students keep running into obstacles which they do not get over on their
own.



5.

Many students lag a week or so behind. Some because they struggle and some
because they don’t.

. Differentiation proved an unexpected challenge. Only one student was able to do

a repeated application of the chain rule, even after a plenary review of theory.

. There is an unexplained overlap Swarm Intelligence. This was not a problem last

year, when FPIA ran before Swarm Intelligence. When they now run in parallel it
is harder to let one module build on the other, and on top of that, the syllabus in
Swarm Intelligence has changed.

3 Attendance

There are typically 10-12 students per session; about 15 students in total following the
module.

4 Additional experience Week 7—9

A couple of additional remarks collected during Weeks 7-9:

1.

2.

3.

more exercises about data preprocessing in Haskell.

more smaller tasks in Haskell to get used to the language before implementing
neural networks.

(several students) other types of neural networks, such as RNN and CNN. They
wanted to learn those networks, at least having the introduction showing what they
are and when to use them.

5 Additional experience Week 10-14

Complaints about too many programming languages to be learnt in different mod-
ules

Exam questions about generic types, typeclasses, and the fat arrow, e.g. Eq a =>
a -> a have not been taught during semester (7)

One students would have liked more emphasis on type system, algebraic types, etc.
Some student who are skilled programmers repeat there dislike for Haskell.

Some students criticise the admittance of students without programming experi-
ence.

At this stage, there is a stable group of eight students attending class.



6 Assessment results

A B|C|D|E]| F| Absent
2111412114 2

Out 13 students sitting the exam, four students failed. The failure rate is disconcert-
ingly high. However, we know that several students have struggled in several modules in
the course, often because of missing prerequisite knowledge. Therefore, we will not make
any conclusions based on the failure rate in this module on its own.

The passing grades show a reasonable distribution.

7 Evaluation of the module description and infrastructure

The evaluation highlights two or three challenges outside the control of the module con-
veners.

Firstly, learning Haskell and Al in the same module is suboptimal. This is mentioned
by a number of students and we can argue the same case based on cognitive load theory
?7. It would be better to teach Al based on a language and paradigm with which all the
students are familiar. The current module was originally designed to cater for students
with no background in programming, and it is clear from the feedback that this is not
appropriate for skilled programmers. When the entire programme now is set up to require
programming background and a catch-up courses in imperative programming is included,
this module no longer makes sense.

The students also object to the number of languages they have to learn for different
modules. Currently every module convener has chosen language(s) completely independ-
ently of all others.

Depending on the students’ own laptops wastes a lot of time, because they run op-
erating systems and most of them do not understand the system they are using. The
module convener cannot be expected to provide technical support on different systems.
Adequate infrastructure can be provided either in the form of technical support for the
different platforms in use, or in the form of standardised computer lab’s. Virtual ma-
chines could be used, but technical support is then needed both to set up and quality
assure the machines and to support students in the deployment. Virtual machines were
tried this year, but the only student who tried to use it on the first day had to give up
intalling it.

8 Evaluation of the delivery

The tutorial format used early in the module has proved extremely effective at that
stage of learning. The practical activity both trains hands-on skills and forms a basis for
theoretical discussion. Most of the class seems to catch up very well. Given the learning
objectives there is no obvious way to improve the learning.

Students repeatedly needing help to get over obstacles in the exercises is intentional.
We believe that the students have to experience the problem first to learn the solution.



The teaching format with a classroom booked for a full day where the convener can come
and go while the students solve exercises has great potential.

There is a number of students who struggle. The continuous evaluation exercises mean
that we have a good overview of exactly how much students are lagging behind. There
is no reason to believe that the problem is more severe than normal for other modules.
So even though this is a problem which should not be taken lightly, the solution may not
lie in the delivery.



