
Collusion-Secure Fingerprinting
A Simulation of the Boneh and Shaw Scheme

Coding Theory and Cryptography

Thesis for the degree of
Master of Science in Informatics

Tor Røneid

14 June 2005

Department of Informatics

Universitas Bergensis

Abstract

Fingerprinting is one of many different technics for protecting digital data
against illegal copying. To achieve this we have to mark every copy uniquely.
We can then trace an illegal copy back to the buyer. It is very important that
the mark is impossible to remove or change for non-colluding buyers.

If many buyers are collaborating they can compare their copies. They will
then discover positions where the copies differ. This is obviously part of the
fingerprint. And when they can identify the fingerprint, they can also alter it.
But this can be prevented by constructing codes that are secure against such
collaborations. We call these codes collusion-secure codes.

This paper will give an introduction to the field of fingerprinting, in particu-
lar collusion-secure fingerprinting. In addition, an overview of some important
collusion-secure fingerprinting schemes will be given. One of these schemes will
then be implemented and simulations on it will be executed to achieve empirical
results that can be compared to the theoretical bounds.

Contents

Preface 1

I The Problem Area 3

1 Introduction 5
1.1 The motivation . 5
1.2 The origin . 5
1.3 The game . 6

1.3.1 Steganography vs. Watermarking vs. Traitor Tracing vs.
Fingerprinting . 7

1.3.2 The five parts of fingerprinting 7
1.3.3 Symmetric vs. Asymmetric vs. Anonymous fingerprinting 8

1.4 Outline of the thesis . 8

2 Terminology 11
2.1 Code construction . 11

2.1.1 The codes . 11
2.1.2 Concatenation of codes 12
2.1.3 Code summary . 13

2.2 Creation of the hybrid fingerprint 13
2.2.1 The marking assumption 14
2.2.2 Pirate strategies . 14

2.3 t-Frameproof codes . 15
2.3.1 Construction of t-Frameproof codes 16

2.4 Tracing . 17
2.5 Model of the fingerprinting system 18

3 The Boneh and Shaw scheme 19
3.1 The facts . 19
3.2 t-Secure Codes . 19
3.3 The Boneh and Shaw Replication Scheme 21
3.4 The Boneh and Shaw Concatenated Scheme 23
3.5 An example . 25

iii

CONTENTS

3.5.1 Construction of the code 25
3.5.2 Construction of the hybrid fingerprint 26
3.5.3 Tracing the pirates . 26

4 Other important schemes 29
4.1 Improving the BS-CS scheme 29

4.1.1 Improve error analysis 29
4.1.2 Change outer code . 30
4.1.3 Change decoding algorithm 30

4.2 Different schemes . 30
4.2.1 The BBK scheme . 30
4.2.2 The Tardos scheme . 31
4.2.3 The LBH scheme . 31
4.2.4 Dual Hamming codes 32
4.2.5 Scattering and Dual Hamming codes 32
4.2.6 Separating codes . 33

II The Simulation 35

5 Introduction 37
5.1 Background . 37
5.2 What is performance? . 37
5.3 Simulation facts . 38

5.3.1 Theory and Practice . 39
5.3.2 Pirate Strategy . 40
5.3.3 The Simulation input 40
5.3.4 The Simulation output 41

5.4 Random number generator . 42
5.4.1 Introduction . 42
5.4.2 The requirements . 43
5.4.3 The choice . 44

6 The results 47
6.1 The formulas . 47

6.1.1 BS-CS formulas . 47
6.1.2 HGS formulas . 47
6.1.3 Notes on the formulas 48

6.2 NOC and NPC . 50
6.3 ε - The error rate . 50

6.3.1 Conclusion . 51
6.4 M - Number of users . 51
6.5 t - Size of pirate collusion . 52
6.6 r - The replication factor . 53

iv

CONTENTS

6.6.1 The simulation tables 53
6.6.2 The analysis . 56
6.6.3 The conclusion . 58

6.7 n2 and q . 59
6.7.1 The simulation tables 59
6.7.2 The analysis . 60
6.7.3 The conclusion . 61

6.8 A short comparison . 62
6.9 Summary . 62

7 Open problems 65
7.1 Compare results against theoretical bounds 65
7.2 Compare several schemes . 65
7.3 Compare pirate strategies . 66

III The Implementation 67

8 The program 69
8.1 The purpose of the program . 69
8.2 Design and implementation . 69

8.2.1 The C language . 70
8.3 Computer usage . 70

8.3.1 Disk . 71
8.3.2 Memory . 72
8.3.3 CPU . 73

8.4 The header file . 74

9 The modules 75
9.1 Overview . 75
9.2 Program control . 76
9.3 Setting the parameters . 76
9.4 Handling the outer code . 76
9.5 Generate hybrid fingerprint . 77
9.6 Trace hybrid fingerprint . 79
9.7 The Random Number Generator 79
9.8 The RNG handler . 79
9.9 Other functions . 80
9.10 Debugging . 80
9.11 More implementation details 80

9.11.1 Generate and store the outer code 80
9.11.2 Generate hybrid fingerprint 81

v

CONTENTS

10 Using bsSim 82
10.1 Generate outer code . 82
10.2 Make hybrid fingerprint . 82
10.3 Trace hybrid fingerprint . 83
10.4 Other functions . 83
10.5 Error messages . 84

IV The Appendices 87

A The source code 89
A.1 The header file . 89
A.2 The main program . 91
A.3 Set parameters . 92
A.4 Generate/read outer code . 93
A.5 Make hybrid fingerprint . 95
A.6 Trace hybrid fingerprint . 98
A.7 The RNG handler . 102
A.8 Mersenne Twister RNG . 102
A.9 Debugging functions . 105
A.10 Other functions . 106

Bibliography 111

vi

Preface

This is my thesis for the degree of Master of Science in Informatics. I got my
assignment in September 2003, so now it is time to hand it in. I picked this
assignment because the concept of protecting copyrighted material is fascinat-
ing. My knowledge of the fingerprinting area was very limited, so I thought it
could be interesting to familiarize myself with it.

I used the first year to get an overview of the problem area. I had a number
of courses in addition to the work on this thesis, so I mainly concentrated on
them. The third semester I started the programming, and in retrospect I see
that this should have began earlier, because after the programming started I
understood the problem area much better. Simulations and most of the thesis
writing was done the last semester. The goal of this paper changed during my
work. Initially the goal was to implement a couple of fingerprinting schemes, do
simulations on them, and then compare the results achieved. But this was, as I
discovered, too time consuming. Fortunately interesting results were achieved
by the implementation of just one scheme.

So have I learned anything from the work on this paper? Absolutely! I have
learned everything from the programming language C to reading and under-
standing theoretical papers and the problem area. Because of my very limited
mathematical background, reading some of the theoretical papers was a chal-
lenge. The programming was relatively straightforward, even if a new language
had to be learned. Here too, the challenge was to understand the fingerprint-
ing scheme good enough to implement it. For the simulation part of this thesis
a better background in statistics would have been an advantage, but I think
I managed. Another important aspect with this work is that I acquired new
experience in working independently on a large project.

Many people have been there to help and support me, so I would like to take
this opportunity to sincerely thank some of them: First of all I have to thank
my supervisor Hans Georg Schaathun for helping me through the process of
writing this paper. He has always been there to answer questions, and his effort
to improve the paper have been priceless. I must also thank my parents for
backing me up through these years as a student. Finally I have to thank the
students at Molde University College and at University of Bergen for making
all these years as a student a memory I will cherish.

Tor Røneid
Bergen, July 27, 2005

1

2

Part I

The Problem Area

3

4

Chapter 1

Introduction

In this chapter the reader will be introduced to the concept of digital finger-
printing. We will take a look at the history, the related areas, and some of the
existing fingerprinting technics.

1.1 The motivation

Illegal copying is a major problem in many areas. For digital material this is
especially true, because copying such material is easy and no information is
lost in the process. In addition, the growth of the Internet makes it possible to
distribute the material in a much larger scale than before. And because of both
technical and legal issues it is often difficult to find and prosecute the pirates.

To protect digital copies is a complicated task. In theory it is always pos-
sible to crack the copy protection. Methods like cryptography does not resolve
this problem, because the information must be decrypted at one point to be
able to use it. Hence the goal of digital fingerprinting is to discourage people
from illegally redistributing their legally purchased copy, by increasing the risk
of being caught. The recent failure of DVD and CD copy prevention systems is
another argument supporting the idea of detection techniques like fingerprint-
ing.

1.2 The origin

Fingerprinting is simply a method for a vendor to prevent illegal copying. It
is an old tool which link a copy of an item to its buyer. This link allows the
vendor, if an illegal copy is found, to trace the buyer responsible for its creation
and redistribution. The first example we know is the use of logarithm tables.
Here the vendor introduce tiny errors in insignificant digits of log(x), for a
random x. We can use the logarithm table below to outline an example.

Example 1 The goal is to mark and sell a copy of the logarithm table to a

5

CHAPTER 1. INTRODUCTION

x log(x)

1 log(1) = 0.00000000000
2 log(2) = 0.30102999566
3 log(3) = 0.47712125471

Table 1.1: The original logarithm table

buyer. The steps taken to assure that every buyer gets a modified, unique
version of the table are as follows:

1. Randomly choose an x. Here we choose x = 3.
2. We change one of the insignificant digits for x = 3. Here we change the

12th digit(1) to the value 2. This change must be unique for this buyer,
because otherwise we will create duplicate tables, and we achieve nothing.

3. We now have a modified logarithm table, which we sell to the buyer. The
link between the modified table and the buyer is stored.

If the vendor finds an illegal copy, the stored link between the buyer and the
table will be used to identify the guilty buyer.

Digital fingerprinting was introduced for the first time by Wagner [Wag83] in
1983. In digital fingerprinting the vendor embeds a secret unique mark in each
copy of the digital object. This mark, the fingerprint, makes it possible to trace
the guilty buyers, which we call the pirates.

If we take a second look at the logarithm table, we can see that if two
or more pirates cooperate they can find the differences in their tables. The
same thing is possible for digital fingerprinting. The pirates can tamper with
the part of the fingerprint which they can detect. These detectable parts can
then be changed, hence the pirate collusion now owns a modified copy of the
item, which we call an illegal copy with a hybrid fingerprint. To overcome the
problem of pirate cooperation, we use a form of fingerprinting called collusion-
secure fingerprinting. This enables the vendor to trace the pirates, even if they
collude. The first paper to address the problem of collusions was written by
Blakley, Meadows and Purdy[BMP85]. Here a scheme is given that specifies
how large the pirate collusion must be in order to erase a fingerprint. The most
well-known collusion-secure scheme is due to Boneh and Shaw[BS95],[BS98],
and it is this scheme that will be examined in more detail in later chapters.

1.3 The game

The following subsections will further explain what digital fingerprinting is all
about. First we will differentiate between the related areas of steganography,
fingerprinting, watermarking and traitor tracing.

6

1.3. THE GAME

1.3.1 Steganography vs. Watermarking vs. Traitor Tracing vs.
Fingerprinting

In steganography a secret message is embedded in a cover message so that it is
hidden and hence cannot be found. The goal of steganography is therefore to
hide the existence of a message from everyone but the intended receiver. For
a closer look at this area, read the overview made by Anderson and Petitcolas
[AP98].

While steganography hides a message from being read, watermarks are sup-
posed to be detected by client machines to signal the fact that the objects are
protected, and some special license is needed in order to run them. The vali-
dation of the user is the primary goal. Watermarking uses the concept behind
steganography to hide the watermark, but even if the watermark is detected
and the algorithmic principle of the method is known, a watermarking scheme
should be robust against attackers. All copies of an object are identically wa-
termarked. The paper, [HK99], by Hartung and Kutter, is recommended for a
presentation of the watermarking field.

In traitor tracing a distributor broadcast encrypted data that should be avail-
able only to certain users. Each user has a unique decryption key that will
decrypt the encrypted data. Some users can collude to create a new key, which
also will decrypt the data. In a traitor tracing scheme it should be possible,
with a low probability of error, to trace at least one of the creators of the new
key, if the number of colluding users is less than some given threshold. For
traitor tracing we need to access the pirate machine to trace leakage based on
the secret key found on the machine. Traitor tracing was introduced by Chor,
Fiat and Naor in [CFN94].

Fingerprinting contains elements from all the above areas. Information is hid-
den in some other information. It must be robust against attacks, and if a
collusion of buyers create a new object (Key in traitor tracing) it should be
possible to find some of the colluding buyers. The goal of fingerprinting is
copyright protection, hence every copy must be individually fingerprinted. The
distributor only needs to capture a copy from one of the colluding buyers to
trace some of them.

1.3.2 The five parts of fingerprinting

We can divide the fingerprinting game in five main parts:

- Codes. The fingerprint is a codeword. One unique codeword must exist
for each buyer. There exists many methods for creating such codewords.

- Embedding. The fingerprint has to be inserted into the object. This
problem is essentially the same as the problem of watermarking.

7

CHAPTER 1. INTRODUCTION

- Mapping. The vendor must of course know which user to blame if an
illegal copy is found. So it is necessary to map the buyer’s identity to the
fingerprint.

- Pirate strategy. The pirate collusion choose a strategy for garbling the
fingerprint. Then they generate and sell copies with this false fingerprint.

- Tracing. If an illegal copy is found, the vendor gives the copy as input
to a tracing algorithm. Hopefully the algorithm outputs the guilty users.

More details on these topics will follow in later chapters.

1.3.3 Symmetric vs. Asymmetric vs. Anonymous fingerprint-
ing

For symmetric fingerprinting both the distributor and the buyer know how the
fingerprinted copy looks like. For this scheme to be trustworthy the distributor
must be honest, but this is not always true. A dishonest worker can distribute
a copy with the same fingerprint to other buyers. If an illegal copy is found,
the buyer and the distributor can blame each other. Hence the distributor can
never prove to a third party that the buyer distributed the data illegally.

For asymmetric fingerprinting the distributor and the buyer work together to
create the fingerprinted copy. The buyer sends the distributor a commitment to
a chosen secret. Then they carry out a protocol, which ends with the buyer ac-
quiring the object, fingerprinted with the chosen secret. The buyer is the only
one who knows this secret. With this solution the dishonest worker can no
longer distribute illegal copies, while the distributor can, when able to present
a sufficiently large fraction of the secret, identify a buyer when an illegal copy
is found. The distributor can obtain a proof of treachery that convinces a third
party, hence asymmetric fingerprinting is a better choice than symmetric. An
overview of asymmetric fingerprinting is given by Pfitzmann and Schunter in
[PS96].

Neither of these schemes do preserve privacy, therefore anonymous fingerprint-
ing has been suggested. In anonymous fingerprinting the distributor does not
know the buyers identities. The identity can only be uncovered when an copy
is used illegally and found. To accomplish this the distributor uses a registra-
tion service that stores the connection between the fingerprints and the buyers.
This scheme is described by Pfitzmann and Waidner[PW97] and Pfitzmann and
Sadeghi[PS99].

1.4 Outline of the thesis

Chapter 6 is the main chapter of this thesis. This chapter presents the re-
sults achieved through the simulations on the Boneh and Shaw fingerprinting
scheme. The most important result outlined in this chapter is the fact that

8

1.4. OUTLINE OF THE THESIS

the r parameter bound given by [BS95],[BS98] is very unprecise (for the chosen
pirate strategy).

The paper is organized as follows:

Part 1: The Problem Area

• Chapter 2 describes the terminology used in the fingerprinting literature.
The chapter will be divided in sections according to the different parts in
a fingerprinting scheme.

• Chapter 3 will introduce the Boneh and Shaw fingerprinting scheme to
the reader. The relevant parts of the scheme will be explained, and an
example will be given.

• Chapter 4 mentions some other important fingerprinting schemes.

Part 2: The Simulation

• Chapter 5 gives an introduction to the simulations done. The background
and some facts needed to understand the simulations are given. Random
number generators, and why the simulation depends on a good one, is
also mentioned here.

• Chapter 6 is the main chapter which will give all simulation results
achieved. These results will then be discussed, and hopefully this will
give new inside to the Boneh and Shaw scheme.

• Chapter 7 discusses future work. Aspects that are important, but have
received little or no attention in this paper due to time limitations, will
be mentioned here.

Part 3: The Implementation

• Chapter 8 gives an introduction to the implementation of the Boneh and
Shaw scheme. Here aspects like design and computer usage will be out-
lined.

• Chapter 9 describes all the program modules. This explanation of the
modules serves as the technical documentation of the program.

• Chapter 10 gives a short user manual. This manual describes how the
user can interact with the program. Common error messages are also
mentioned.

Part 4: The Appendices

• Appendix A lists the program source code.

9

CHAPTER 1. INTRODUCTION

10

Chapter 2

Terminology

The goal of this chapter is to familiarize the reader with the terminology used
in later chapters. First we will take a look at the codes used in fingerprinting,
then we mention how a collusion of buyers can create a hybrid fingerprint. The
concept of t-frameproof codes will then be defined, and the last section will give
an introduction to tracing algorithms. Most of the notations and terminology
used throughout this paper are from coding theory.

2.1 Code construction

2.1.1 The codes

The distributor maintains a set of unique fingerprints that will be used to mark
copies with. In general we call this an (n, M)q-code C. Here n is the length
of the fingerprint, or in other words, the fingerprint contains n symbols. Such
a symbol will be called a mark, and this mark must be within the alphabet q,
which means that all the marks in the code must be in the interval {0, 1, . . . , q−
1}. M is the number of users supported by the code, hence the distributor can
sell copies to at most M buyers.

Example 2 Let C be a code with 4 codewords, length 5 and an alphabet of 2.
C is then a (5, 4)2-code.

C =


11000
01100
00110
00011

As we see from the example, the code C consists of 4 codewords. The codewords
of C together form a matrix which is called the code book C. From this code
book we will assign row i to user i, for 1 ≤ i ≤ M .

Definition 1 C = {w1, w2, . . . , wM} ⊆ qn is called an (n, M) code where each
codeword wi is assigned to one user ui, and the set of all words in C is called
the code book.

11

CHAPTER 2. TERMINOLOGY

The Hamming distance between two words x and y is denoted d(x, y), and the
minimum distance of a code C is a denoted d(C) or just d.

Example 3 If we look at 2 codewords from the previous example, x = 11000
and y = 01100, we see that these two codewords differ in 2 positions, hence the
Hamming distance is d(x, y) = 2. The minimum distance of the code in the
previous example is d = 2, because 2 is the smallest Hamming distance between
any two codewords in the code.

In Section 2.3 we will examine a particular code construction called t-frameproof
code. This code is not defined in this section because it is necessary to explain
the marking assumption and the concept behind concatenated codes first.

The notation C will indicate the use of a general code. But we also have
codes that are parts of other codes. Concatenation of codes will be discussed
in the next subsection.

2.1.2 Concatenation of codes

Concatenation is a well-known technique from coding theory, and it has proven
extremely useful for the fingerprinting area.

Definition 2 Let C1 be a (n1, q) inner code, and let C2 be an (n2,M)q outer
code. We then map the symbols of C2 on a word from C1. The result is the
concatenated code C ′(n1n2,M)q.

Often the symbol Q is used to represent the size of the inner code alphabet.
But through this paper we will only look at binary codes, hence we assume an
inner code alphabet size of 2, with the symbols {0, 1}.

The following definition will further explain the concatenation of the codes:

Definition 3 Let C1 = {w(1), . . . , w(q)} be an (n1, q) inner code, and v =
v1, v2, . . . , vn2 an outer codeword. Then we have the concatenated word W =
w(v1)||w(v2)|| . . . ||w(vn2).

We see that the number of codewords in the inner code equals the outer code
alphabet. This means that it is a one-to-one relationship between the outer
code symbols and the inner codewords. The concatenation process will look at
the outer code symbols, and then write the composition of the inner codewords
the symbols point to. For example will the symbol 2 in the outer code point
to codeword number 2 of the inner code. The resulting code will then have
length n1n2 and support for M buyers. One inner code, which is part of the
concatenated code, is called a block or a component.

Example 4 This example will illustrate the concatenation process.
C2 = (4, 4)4 outer code

C2 =


1234
2341
3412
4123

12

2.2. CREATION OF THE HYBRID FINGERPRINT

C1 = (4, 4) inner code

C1 =


1000
0100
0010
0001

C ′ = (n1n2,M)q = (16, 4)4 concatenated code

C ′ =


1000||0100||0010||0001
0100||0010||0001||1000
0010||0001||1000||0100
0001||1000||0100||0010

2.1.3 Code summary

Code Notation Explanation

General n Length of fingerprint
code M Number of codewords

C q The alphabet size
(n, M)q The code notation

Inner n1 Length of fingerprint
code q Number of codewords

C1 Q The alphabet size
(n1, q)Q The code notation

Outer n2 Length of fingerprint
code M Number of codewords

C2 q The alphabet size
(n2,M)q The code notation

Concat. n2 · n1 Length of fingerprint
code M Number of codewords

C ′ q The alphabet size
(n2 · n1,M)q The code notation

Table 2.1: Code notation overview

2.2 Creation of the hybrid fingerprint

This section will examine the information available to a pirate collusion, and
the strategies they employ when creating hybrid fingerprints. A hybrid finger-
print is a false fingerprint constructed by one or more buyers. A buyer which

13

CHAPTER 2. TERMINOLOGY

construct a hybrid fingerprint will be called a pirate, and a collusion of pirates
will be called a pirate collusion P . The number of pirates in P will be denoted
t.

2.2.1 The marking assumption

As mentioned in Chapter 1, a distributor must embed the fingerprint into the
digital copy. This embedding must ensure that:

• A non-colluding pirate cannot detect the marks.
• The pirates cannot change the state of an undetected mark without ren-

dering the object useless. The fingerprint must survive any changes of
file format and lossy compression.

The marking assumption defines what a pirate collusion is allowed to do. The
possible codewords that a pirate collusion can generate are given by the follow-
ing definition:

Definition 4 Let P ⊆ C be the set of fingerprints held by a coalition of pirates.
The pirates can produce a copy with a false fingerprint x for any x ∈ FC(P),
where

FC(P) = {(c1, . . . , cn) : ∀i,∃(x1, . . . , xn) ∈ P, xi = ci}.

We call FC(P) the feasible set of P with respect to C.

Two or more pirates can only detect marks in which their copies differ. Hence
the set of possible codewords the pirates can generate is the feasible set. To
illustrate the idea of feasible sets let’s consider an example:

Example 5 Let A and B be two pirates each assigned a codeword of 10110
and 10011. The feasible set contains the positions where the codewords differ.
In this example position 3 and 5 differ, hence the feasible set is F (AB) =
1·0·?·1·?. Then A and B use this information to construct a hybrid fingerprint,
for example 10010.

2.2.2 Pirate strategies

Colluding pirates can detect those marks in which their copies differ. This
makes it possible to change the detected marks in order to create a hybrid
fingerprint. The strategies considered by the pirates for setting the detected
marks are called pirate strategies. But the pirate strategies are restricted,
because they can only change what they see. The following information is
assumed to be unknown by the pirates:

• The undetected marks in the object.
• Which marks in the object that correspond to which coordinates in the

code (a random permutation hides this fact).

14

2.3. T-FRAMEPROOF CODES

• The alternative in each mark in the object.
• Which codewords that are assigned to which users.

The pirates use a strategy that they think will fit their purpose. Examples can
be to choose a strategy that will blame other users, or a strategy that minimizes
the probability of getting caught. We distinguish between choosing the strategy
before or after the pirate collusion locates the detectable marks. If they can
choose the strategy after the detectable marks are known, they can pick an
optimal strategy, hence the probability of being caught will decrease. Adverse
selection is when an pirate collusion choose to create a hybrid fingerprint only
if they observe that the error probability is in their favor.

Some simple strategies will now be mentioned [LL00b]. These strategies are
general, they are not restricted to particular fingerprinting schemes.

Deterministic Strategies: For these strategies no random choices are taken
by the pirates. Some deterministic strategies will now be given. These strate-
gies require that the number of pirates must be odd and greater than 2.

• Majority choice: For all the detectable marks, the pirates choose the
alternative that occurs the greatest number of times in the pirates’ object.
Hence the illegal fingerprint will, on average, have a small Hamming
distance to the pirates’ fingerprints.

• Minority choice: This is the opposite of majority choice. Here the illegal
fingerprint on average will have a large Hamming distance to the pirates’
fingerprints. This sounds better, but in fact it is just as revealing as an
small Hamming distance.

• Binary Addition: For all the detectable marks, the pirates choose the
alternative that occurs an odd number of times in the pirates’ objects. It
is also possible to invert the result of binary addition.

Random Strategy: Here the pirates use random choices to set the detected
marks. An example of such a strategy is:

• Random Alternative Choice: For each of the detectable marks the pirates
choose randomly among the different alternatives they can see, with equal
probability.

Not much literature exists on pirate strategies, but for a more detailed discus-
sion on the topic, take a look at the paper [LL00a].

2.3 t-Frameproof codes

We would like to construct codes where no collusion can frame a user outside
the collusion. To achieve this goal we often restrict the collusion size to t pirates.
The codes constructed under this restriction are known as t-frameproof codes.

15

CHAPTER 2. TERMINOLOGY

Definition 5 A code C is t-frameproof if every set P ⊂ C, of size at most t,
satisfies F (P) ∩ C = P .

What this means is essentially that a collusion P , of size at most t, can only pro-
duce codewords that are codewords of P . This fact also makes a t-frameproof
scheme combinatorially secure, because the hybrid fingerprint is a pirate fin-
gerprint (tracing is trivial).

2.3.1 Construction of t-Frameproof codes

So, how can we construct such t-frameproof codes. Over the binary alphabet
{0, 1} we can use the following method: Let C(M,M) denote all words of length
M such that they each contain one 1.

Example 6 : C(3, 3) = {100, 010, 001}, C(4, 4) = {1000, 0100, 0010, 0001},
and so on.

Claim 1 C(M) is an M-frameproof (M,M)-code.

Since there are M possible collusions of size M − 1, the code must have at
least length M . Otherwise an collusion will be able to detect at least one bit
position, and frame a user outside the collusion. The length of each codeword
in C(M) is linearly proportional to the number of users, hence the length grows
as the number of users grow. This is not practical. We risk getting a fingerprint
that is larger than the actual piece of data.

We construct shorter codes by concatenating the M -frameproof code dis-
cussed above with an Error Correcting code. The M -frameproof code is now
used as the inner code C1, and the error correcting code is the outer code, C2.
We give the definition of an Error correcting code:

Definition 6 A set C2 of M words of length n2 over an alphabet of q letters
is said to be an (n2,M, d)q-Error Correcting Code or in short, an (n2,M, d)q-
ECC, if the Hamming distance between every pair of words in C2 is at last
d.

The concatenated code C ′ is then the composition of C1 which is an (n1, q)-code
and C2 which is an (n2,M, d)q-ECC.

Lemma 1 Let C1 be a t-frameproof (n1, q)-code and C2 be (n2,M, d)q-ECC.
Let C ′ be the composition of C1 and C2. If d > n2(1 − 1/t) then C ′ is t-
frameproof.

The next two lemmas will determine the values of n2 and n1 we must use to
construct t-frameproof codes.

Lemma 2 For any positive integer q, M let n2 = 8q log(M). Then there exists
an (n2,M, d)2q-ECC such that d > n2(1− 1/q).

Theorem 1 For any positive integer q, t let n1 = 16t2 log(q). Then there exists
an (n1, q)-code which is t-frameproof.

16

2.4. TRACING

2.4 Tracing

A fingerprinting scheme consists of a code, a mapping between the code and the
set of users, and a tracing algorithm A. After a distributor has received a hybrid
copy, a method is needed in order to trace the pirates that are responsible for
creating the copy. A tracing algorithm uses the fact that the pirates only can
change the marks they can detect, to trace at least one of the pirates. It takes
a hybrid fingerprint x as input and outputs a subset P ⊆ C.

The tracing algorithm output is not always trustworthy. We often talk
about probabilistic and combinatorially collusion-secure schemes. In a combi-
natorial scheme the tracing algorithm returns a subset of the guilty collusion
with probability 1. But these schemes are not common in the collusion-secure
fingerprinting literature due to long codeword requirements. Instead we use
probabilistic schemes. Here the tracing algorithm returns the guilty pirate
with probability at least 1− ε for some small error rate ε.

The output of a tracing algorithm can be divided in three:

• Successful tracing: Tracing is successful if the output is a non-empty
subset of the pirate collusion.

• Type I error: An error of Type I occurs if the output of the algorithm is
empty.

• Type II error: An error of Type II occurs if the output of the algorithm
is one or more innocent buyers (can also include pirates).

The Type II error is clearly more severe.
If we use a concatenated code to mark copies with, the hybrid fingerprint

x will be a composition of n2 inner codes. So when x is given as input to the
tracing algorithm, it often decodes each block (inner code) using a decoding al-
gorithm specific for the inner code. This gives a word of symbols from the outer
code alphabet. This word will then be decoded with an algorithm designed for
the outer code.

One example of an algorithm used for outer code decoding is Closest Neigh-
bor Decoding, or just CND. This algorithm takes a word x as input, and returns
a word c ∈ C such that d(c, x) is minimized. Hence the word in the code C,
that has the most positions in common with x, will be returned. The owner
of this codeword will be presented as the guilty pirate. This can always be
performed in O(M) operations, and for some codes it may be faster.

17

CHAPTER 2. TERMINOLOGY

2.5 Model of the fingerprinting system

Figure 2.1: Fingerprinting system

18

Chapter 3

The Boneh and Shaw scheme

This chapter will explain one of the most well-known collusion-secure schemes
created, the Boneh and Shaw scheme [BS95],[BS98]. Here the most impor-
tant aspects will be mentioned, but proves that offer nothing to the process of
understanding the scheme are left out.

In [BS98] Boneh and Shaw take a step by step approach in order to ex-
plain the scheme. Totally secure and probabilistic t-secure codes are first de-
fined. Then they introduce the replication scheme, and finally the concate-
nated scheme (BS-CS) is constructed. This gives an intuitive introduction to
the reader, so the approach is adopted here.

The last section of this chapter will give an example of BS-CS fingerprinting
scheme. This example will deal with code construction, creation, and tracing
of the hybrid fingerprint.

3.1 The facts

The BS-CS scheme consists of a binary code and a tracing algorithm that
always returns one user as guilty. The code is a concatenation of an inner and
an outer code. The scheme is probabilistic. Given the desired error probability
(ε), the number of pirates the code must handle (t), and the total number of
users in the system (M), it is possible to choose the code length so that the
actual error probability is less than ε.

3.2 t-Secure Codes

A totally t-secure code is the combination of a t-frameproof code and a tracing
algorithm. The tracing algorithm is used when the distributor locates a forged
copy, and wants to trace the members of the guilty collusion. The construction
of this algorithm is described in this section.

Definition 7 A code C is totally t-secure if there exists a tracing algorithm A

19

CHAPTER 3. THE BONEH AND SHAW SCHEME

satisfying the following condition: If a collusion P of at most t users generates
a word x then A(x) ∈ P .

If a distributor locates an illegal copy x generated by a collusion, x will be
given as input to the tracing algorithm. A totally t-secure scheme is of course
combinatorial, so the output will be at least one member of the collusion. It
is not very likely that the tracing algorithm will return all the users in the
guilty collusion, because some of the members might have been passive in the
construction process. They have not contributed to the resulting fingerprint.
The following lemma gives an important condition for a code to be totally
t-secure.

Lemma 3 We have a set of disjoint collusions P1, . . . , Pi, of at most t users
each, that do not have any member in common. Denote the feasible set of each
of these collusions by F (P1), . . . , F (Pi). If C is totally t-secure then P1 ∩ . . . ∩
Pi = ∅ ⇒ F (P1) ∩ . . . ∩ F (Pi) = ∅.

This means that when all the collusions don’t have any members in common,
and the feasible sets of all collusions don’t share common codewords, then C is
totally t-secure. This prevent the situation where collusions with no common
members can construct the same codewords. Then it would be impossible to
know if the guilty users were caught.

Unfortunately pirates can use a strategy called the majority word strategy.
This allows a collusion of 2 or more users to create a codeword outside their
feasible set.

Theorem 2 For t ≥ 2, M ≥ 3 and q = 2 there exists no totally t-secure
(n, M)-codes.

We prove this theorem for a collusion of 2 pirates. We have 3 users u1, u2, u3

each with one distinct codeword w(1), w(2), w(3). We define the majority word
m = MAJ(w(1), w(2), w(3)) like this:

mi =

{
w

(1)
i , if w

(1)
i = w

(2)
i or w

(1)
i = w

(3)
i

w
(2)
i , if w

(2)
i = w

(3)
i

So the majority word m will be feasible for all three collusions, but the inter-
section of the collusions will be empty. The following example will illustrate
why this is the fact.

Example 7 The (3, 3)-code C = {100, 010, 001} has the majority word m =
000, because this word is feasible by all possible collusions {u1, u2}, {u1, u3},
{u2, u3}. If the collusion contains the words {100, 010}, then we see that the
marks in positions 1 and 2 can be detected and changed to 0. Since all the
collusions can construct the majority word, the intersection of the feasible sets
for all the collusions contain at least one word that is the majority word. And
as we see above, the intersection of the collusions is empty. C is therefore not
a totally 2-secure code by Lemma 3.

20

3.3. THE BONEH AND SHAW REPLICATION SCHEME

So how can we solve this majority word strategy problem. The key is to use
randomness. The distributor uses a random permutation string R on the code-
words before they are embedded into the objects. The point is that the random
choices will be hidden from the users. This enables the distributor to catch at
least one member of the pirate collusion with high probability.

Let P be a collusion of t users that constructs a hybrid fingerprint. Schemes
that let us catch at least one of the users in P with probability 1− ε is called
t-secure codes with ε-error. We see that the use of combinatorial schemes now
are abandoned.

Definition 8 A fingerprinting scheme is t-secure with ε-error if there exists a
tracing algorithm A satisfying the following condition: If a collusion P of at
most t users generates a word x then

Pr[A(x) ∈ P] > 1− ε

where the probability is taken over the random string R and the random choices
made by the collusion.

3.3 The Boneh and Shaw Replication Scheme

This section will discuss the q-secure codes that are the building block (the
inner code) for the logarithmic t-secure codes that will be discussed in the next
section. This q-secure code is called the Boneh and Shaw Replication Scheme
(BS-RS). Why it is called a replication scheme will soon be explained. This
q-secure code will help us to construct shorter codes of length O(log(q)). To
recapitulate, q is the number of codewords in the inner code (and the outer
code alphabet, but that is not relevant in this section).

First an q-secure (n1, q)-code with ε error for any ε > 0 is constructed.
This will make it possible for the distributor to trace an illegal copy back to a
member of a collusion with high probability, no matter how large the collusion
is. Let cm represent the column of height q with first m bits set to 1 and the rest
to 0. The code Γ(q, r) consists of all columns c1, . . . , cq−1 duplicated r times.
The r is called the replication factor, hence we call this scheme the replication
scheme. We can look at Γ as a matrix with ones at the main diagonal and
above, and zeroes below. Let C(3, 4) be the code:

C =


111
011
001
000

This code consists of 3 columns of height 4. The first column consist of one 1,
and we therefore call it c1. Column two consists of two 1’s so we call it c2, and

21

CHAPTER 3. THE BONEH AND SHAW SCHEME

so on. Since r = 3 we repeat each column ci 3 times. We get the code:

Γ =


111111111
000111111
000000111
000000000

Let w(1), . . . , w(q) be the codewords of Γ(q, r). The distributor will choose a
random permutation π over wi. Before embedding the marks into the data, a
random permutation on the codewords will be executed. The location of the
bit embedded by mark i is then hidden from the users, hence the majority word
strategy is no longer a problem (see example 8). We can for example choose
the random permutation π = {2, 1, 5, 7, 3, 9, 4, 8, 6}, and then map the code
according to this:

Γp =


111111111
001101111
000101010
000000000

The following theorem determines the size of r for a code Γ such that given q
users the code Γ is q-secure with ε error. This means that, with high probability,
a collusion of q pirates can not frame a user outside their collusion.

Theorem 3 For q ≥ 3 and ε > 0 let r = 2q2log(2q
ε). Then the fingerprinting

scheme Γ(q, r) is q-secure with ε-error.

The length of this code is r(q − 1) = O(q3log(q
ε).

Before we describe an algorithm for tracing pirates it is necessary to look at an
important notation:

1. We define Bm to be all bit positions in which the users see columns
of type cm. The number of elements in Bm is r. In above example
B1 = {1, 2, 3}, B2 = {4, 5, 6} and B3 = {7, 8, 9}.

2. For 2 ≤ s ≤ M − 1 define Rs = Bs−1 ∪Bs.
In our example R2 = {1, 2, 3, 4, 5, 6} and R3 = {4, 5, 6, 7, 8, 9}

3. For a binary string x, let weight(x) = number of 1’s in x.

The following example will give some intuition to the terminology just ex-
plained:

Example 8 The hidden permutation π prevents the collusion from knowing
which marks represent which bits in the code. For simplicity we here look at
the unscrambled code, but we still assume that the only information available

22

3.4. THE BONEH AND SHAW CONCATENATED SCHEME

to the pirate collusion is the detected marks. We have the code:

Γ =


w1 = 111111111
w2 = 000111111
w3 = 000000111
w4 = 000000000

If we look at the codewords in Γ, we see that without w2, all bit positions in R2

(the first 6 columns) are equal. The users with codewords w1, w3 and w4 can not
determine whether the bits in R2 comes from B1 or B2. So when they produce
a codeword x, the number of 1’s will be distributed evenly within locations in
R2, with high probability. If the 1’s in R2 is not evenly distributed, then with
high probability user 2 is a member of the pirate collusion.

Given a word x generated by some collusion P , Algorithm 1 outputs a member
of P with probability 1− ε.

Algorithm 1 Given unscrambled x ∈ {0, 1}n1 with unreadable marks set to 0,
find a subset of the collusion that produced x.

1. If weight(x|B1) > 0, output user 1 as guilty
2. If wight(x|Bq−1) < r, output user q as guilty
3. For all s = 2 to q − 1 do: Let k = weight(x|Rs). If

weight(x|Bs−1) <
k

2
−

√
k

2
log

2q

ε

output user s as guilty.

The correctness of this algorithm is given by the next two lemmas:

Lemma 4 Consider the code Γ(q, r) and r = 2q2log(2q
ε). Let L be the set of

users that Algorithm 1 outputs as guilty on input x. With probability at least
1− ε the set L is a subset of the collusion P that produced x.

Lemma 5 Consider the code Γ(q, r) where r = 2q2log(2q
ε). If L is the set of

users Algorithm 1 pronounces as guilty on input x, then L is not empty.

3.4 The Boneh and Shaw Concatenated Scheme

We will take a look at the requirements to achieve a t-secure logarithmic length
code. To achieve such codes Boneh and Shaw uses the concatenation of an inner
code and an outer code:

• As the inner code the Boneh and Shaw Replication Scheme (BS-RS) is
used. This is the code described in the previous section as Γ. It is a binary
(r(q − 1), q)-code which is q-secure with ε error. The r is the amount of
duplication and q is the number of codewords.

23

CHAPTER 3. THE BONEH AND SHAW SCHEME

• As the outer code Boneh and Shaw use the Random Code (RC) scheme
due to Chee [Che96]. We use the notation C2 for this code, which is
an (n2,M)-code over the alphabet q. Each symbol in each codeword is
chosen uniformly at random from the alphabet. The length is given by
n2, while M is the number of users supported by the code.

• We then concatenate the two codes to create a concatenated code. We
call this resulting scheme the Boneh and Shaw Concatenated Scheme
(BS-CS), and we write C ′(n1n2,M)q. The concatenation is achieved as
described in Chapter 2. We map each of the outer codeword symbols to a
inner codeword. The concatenated code contains M codewords and has
length n1 · n2, where n1 = r(q − 1).

The following theorem defines the code parameter sizes:

Theorem 4 Given integers M , t and ε > 0 we set

q = 2t, n2 = 2t log(
2M

ε
), r = 2q2 log(

4qn2

ε
)

then C ′(n1n2,M)q is a t-secure code with ε-error. The code contains M words,
and has length n1n2.

The following algorithm will describe how we can trace a hybrid fingerprint x
with the use of Algorithm 1 and closest neighbour decoding

Algorithm 2 Given an unscrambled x ∈ {0, 1}(n1n2) with unreadable marks
set to 0, find a subset of the collusion that produced x.

1. Apply Algorithm 1 to each of the n2 components of x. For each component
i = 1, . . . , n2, arbitrarily choose one of the outputs of Algorithm 1. Set yi

to be this chosen output. Note that yi is a number between 1 and q. Next,
form the word y = y1, . . . , yn2.

2. Find the word w ∈ C2 which matches y in the most number of positions
(ties are broken arbitrarily).

3. Let u be the user whose codeword is derived from w ∈ C2. Output user u
as guilty.

Lemma 6 Let x be a word which was produced by a collusion P of at most t
users. Then with parameters as in theorem 4, Algorithm 2 will output a member
of P with probability at least 1− ε.

Recent work has shown that the BS-CS scheme is better than assumed by it’s
two authors. Chapter 4.1 gives a short summary of the [Sch03a] analysis, and
improvements on the outer code and decoding algorithm. The simulation re-
sults given in Chapter 6 will show that the BS-CS scheme is much better than
initially believed, for an particular pirate strategy.

24

3.5. AN EXAMPLE

3.5 An example

This section will provide an example of the BS-CS scheme. Because the smallest
codes are too large to include here, this example will not be logarithmic.

First we construct a concatenated code from an inner and an outer code.
Then we create a pirate hybrid fingerprint, and at last we find the guilty pirate
by tracing the hybrid fingerprint. We use the notation C1 for the inner code.

3.5.1 Construction of the code

We want to provide for a maximum of 4 users, so we randomly choose the outer
code (RC): C2 = (n2,M)q = (4, 4)4:

C2 =


1432
3421
2313
1223

Since the alphabet of the outer code is 4, the number of codewords in the inner
code also must be 4. Hence the inner code (BS-RS) is: C1 = (q, r) = (4, 3):

C1 =


111111111
000111111
000000111
000000000

We then concatenate C1(4, 3) with C2(4, 4)4 as described in Chapter 2. The
resulting code will be the concatenated code (BS-CS): C ′(n1n2,M)q.

C ′ =


W1 = 111111111‖000000000‖000000111‖000111111
W2 = 000000111‖000000000‖000111111‖111111111
W3 = 000111111‖000000111‖111111111‖000000111
W4 = 111111111‖000111111‖000111111‖000000111

C ′ have M = 4 codewords with length n2r(q−1) = 4×3(4−1) = 36. Therefore
the code parameters of C ′ is (36, 4)4. We can see that every codeword in C ′

consists of 4 components, i.e. 4 copies of C1(q, r).
In addition to keeping the codewords of C2 hidden from the users, we also

keep the permutation π on the codewords of C ′ secret. We choose a permutation
word π randomly and then we execute the permutation on the codewords in
C ′ before they are embedded into the copies.

Perm.


π = 327916485‖358791426‖892741563‖867942135
W1 = 111111111‖000000000‖110100000‖111110001
W2 = 001100010‖000000000‖110110110‖111111111
W3 = 001101111‖001110000‖111111111‖101100000
W4 = 111111111‖011110101‖110110110‖101100000

25

CHAPTER 3. THE BONEH AND SHAW SCHEME

3.5.2 Construction of the hybrid fingerprint

We have a collusion P of t = 2 users. These two users will we call user A and
user B. A has the fingerprint W1, and B has W3. User A and B then compare
their copies to produce a new illegal copy. Their feasible set is given by F (AB)
and the hybrid fingerprint is written HFP . HFPp is the permutated hybrid
fingerprint. Detectable marks will be written as ?.

Hybrid


W1 = 111111111‖000000000‖110100000‖111110001
W3 = 001101111‖001110000‖111111111‖101100000
F (AB) = ??11?1111‖00???0000‖11?1?????‖1?11?000?
HFPp = 101111111‖000100000‖111101010‖101110000

When the collusion constructs this codeword it must either use 1 or 0 for the
marks detected (or it can set the mark to be unreadable). Here it uses 1’s for
approximately half the marks, and 0’s for the rest (this depends on the pirate
strategy).

3.5.3 Tracing the pirates

When the distributor receives a copy of the object marked with this hybrid
fingerprint, the goal is to find at least one of the members of the guilty pirate
collusion P . The first step is to use the permutation word π on the codeword
in order to get the non-permutated hybrid fingerprint:

perm−1 =


HFPp = 101111111‖000100000‖111101010‖101110000
π = 327916485‖358791426‖892741563‖867942135
HFP = 101111111‖000000100‖110001111‖000100111

The second step is to give the fingerprint as input to Algorithm 2. This algo-
rithm breaks the codeword HFP into 4 components, and gives each component
as input to Algorithm 1. The ε value used in Algorithm 1 is calculated like
this:

εin = 2q · 2−(r/(2q2))

The first word given as input to Algorithm 1 is 101111111. First the word is
tested against the first condition: weight(x|B1) > 0. B1 is the 3 first positions
in the word x. Is the number of 1’s in B1 higher than 0? The answer is yes (2),
hence this condition is met, and Algorithm 1 gives the output 1. The output
returned for all the 4 components of the hybrid fingerprint is given below:

1. Input to Algorithm 1: 101111111. Output: y1 = 1 (condition 1 is met).
2. Input to Algorithm 1: 000000100. Output: y2 = 4 (condition 2 is met).
3. Input to Algorithm 1: 110001111. Output: y3 = 3 (condition 3 is met).
4. Input to Algorithm 1: 000100111. Output: y4 = 2 (condition 3 is met).

26

3.5. AN EXAMPLE

We now form the word y = y1, y2, y3, y4 = 1432. The next step is to compare
this word with the outer codewords in C2. The user with the outer codeword
with the smallest Hamming distance to y, is probably the guilty one. In this
example it matches user 1’s codeword in 4 positions. User 1 is part of the
collusion, hence the distributor has found at least one member of the guilty
collusion P .

27

CHAPTER 3. THE BONEH AND SHAW SCHEME

28

Chapter 4

Other important schemes

This chapter will first outline some of the improvements published on the BS-
CS scheme. Then a quick introduction to the pros and cons of some of the
fingerprinting schemes that exist in addition to the BS-CS scheme will be given.
Most of the codes from the literature are binary, hence all schemes mentioned
here will be binary. For a detailed overview and comparison of most of the
following schemes, see [Sch04a].

4.1 Improving the BS-CS scheme

First we will explain how we can improve the BS-CS scheme. The scheme uses
an outer code due to [Che96], hence the inner code and the tracing algorithm
are the new aspects introduced. The following can be done to improve the
BS-CS scheme:

1. Improve error analysis.

2. Change outer code.

3. Change inner code.

4. Change decoding algorithm.

In the following subsections will mention some of the papers that give improve-
ments on the codeword lengths.

4.1.1 Improve error analysis

In [Sch03a] Schaathun gives a new analysis on the error probability of the BS-
CS scheme. The bounds given here proves that the BS-CS scheme is better
than assumed, i.e. shorter codewords can be used. In addition to the analysis,
list decoding is introduced as outer code decoding. This facilitate the tracing
of more than one pirate, and it also make the error analysis simpler.

29

4.1.2 Change outer code

In [Sch04a] Schaathun introduce a new scheme which uses the BS-RS scheme
as inner codes and Reed-Solomon codes as outer codes. AG codes are also tried
as outer code, and it is shown that these codes with large distance are much
better than random codes if the inner code can be made large enough. The
Reed-Solomon codes can be decoded with the Guruswami-Sudan algorithm,
with complexity O(n).

4.1.3 Change decoding algorithm

In [SFM05] Schaathun and Fernandez-Muñez improve the decoding algorithm
of the BS-CS scheme by using soft output from the inner decoder. This per-
mits the use of significantly shorter codewords. The only excisting scheme
with comparable or better rates is the Tardos scheme (Chapter 4.2.2), but this
scheme is subject to adverse selection. The new decoding algorithm designed in
[SFM05] has complexity O(M log M), because the weight has to be calculated
and compared for each codeword. This complexity is typical for fingerprinting
schemes.

4.2 Different schemes

4.2.1 The BBK scheme

In their paper [BBK03], Barg, Blakley and Kabatiansky present binary fin-
gerprinting codes secure against size-t collusions which enable the distributor
to recover at least one of the pirates with probability of error exp(−O(n)) for
M = exp(O(n)).

The construction of binary fingerprinting codes in the BBK scheme employs
concatenation of two codes. A long outer code C2 and a shorter inner code
C1. The code C2 is error-correcting with large minimum distance, while the
code C1 has a (t, t)-separating property. The use of separating codes is one
of the new ideas of this scheme. The inner codes in BBK are not themselves
collusion-secure with the decoding algorithm in use, but the minimum distance
in the outer code is large enough not only to trace, but to correct for some
inner decoding errors. The inner code can have a very high error rate, because
the outer code can be made powerful enough to correct it. Since the outer
codes must correct tracing errors from the inner decoding in addition to the
tracing, the outer codes must be larger than traceability codes. The theory
on (2, 2)-separating codes are limited. Unless better separating codes can be
constructed, the BBK scheme is worse than exponential in t, hence it will give
a long code even for a moderate t. The best BBK inner code known is duals
of BCH codes[SH03]. These are especially good for small t. For a survey on
separating codes see [sag94]. Reed-Solomon and AG codes are also suggested
as outer codes for the BBK scheme.

30

Often a fingerprinting scheme needs a randomizing secret key to limit the
information available to the pirates. The key used by the BBK scheme is
much shorter than that of other known schemes. Only the mapping from the
outer code alphabet onto the inner code must be kept secret. This mapping
must be chosen at random for each block. The key size of the BBK scheme is
n2 log q! = O(log M) bits. The key size increase as rapidly in the length of the
inner codes for BBK, as it does in the total length for other codes, hence the
inner codeword lengths alone is greater than the total lengths of other schemes.

The BBK scheme was the first one to introduce a decoding algorithm with
complexity logarithmic in M . The problem with the BBK decoding is that the
inner decoding depends heavily on t. Every possible t-set of codewords has to
be considered, giving exponential complexity in t. So even for a moderately
large t, the BBK decoding algorithm is likely to be slow.

4.2.2 The Tardos scheme

Tardos [Tar03] introduced a new probabilistic scheme where the codes for M
users are ε-secure against t pirates with code length O(t2 log(M/ε)). The main
results in this paper are the construction of short fingerprinting codes, and the
proof of a matching lower bound for the length of any fingerprinting code. This
construction improves the codes proposed by the BS-CS scheme whose length
is approximately the square of this length. The code length can be calculated
for any M and ε. The length is extremely good for large t, but unfortunately
this scheme is subject to adverse selection. Therefore the scheme often is used
as an inner codes. Concatenating a Tardos code with a larger outer code, will
much likely hide the information leading to adverse selection.

One of the most important aspects about the Tardos scheme is that the
probability of accusing a given innocent user is independent of the Marking
Assumption and the number of pirates t. Hence an over-sized pirate collusion
can rarely frame anyone.

Tardos uses random codes, so the entire random code is a secret key. This
will created a huge key space. Tardos inner decoding complexity depends on
t only through the dependency on n. The decoding algorithm has complexity
O(t4).

The results presented in this paper also imply that randomizing fingerprint
codes over a binary alphabet are as powerful as over an arbitrary alphabet.

4.2.3 The LBH scheme

With the paper [LBH03] Le, Burmester and Hu construct a probabilistic fin-
gerprint code where at least one colluder in a collusion of up to t pirates can
be traced with high probability. They prove that this code is shorter than the
BS-CS code, and that it is asymptotically optimal when t is constant.

31

The length of the construction is n = ln(M/ε)/g(t) for any t ≥ 2, where g(t)
depends only on t. For a constant t, this improves on the BS-CS construction
by a factor of O(ln 1/ε). For the special case where t = 3, the construction gives
codes of length n = 9851 ln(M/ε), which is better than the results presented
by Sebe and Domingo-Ferrer [SDF02b],[SDF02a] when M > 6000.

This scheme is good for a small t, but terrible for a large one. It is also
susceptible to adverse selection, hence we often use it as an inner code for
concatenation. Because the length formula incorporate the M and ε-values, it
can use any sizes for these parameters.

As for the Tardos scheme, LBH also uses random codes, so the secret key
is the entire random code. The decoding depends on a CND related algorithm,
but here the Hamming metric is not used. The inner decoding complexity de-
pends on t only through the dependency on n, so it has complexity exponential
in t.

4.2.4 Dual Hamming codes

In [HJDF00] Herrera-Joancomarti and Domingo-Ferrer show that for t = 2,
collusion security can be obtained using the error-correcting capacity of dual
Hamming codes [MS77]. With this code as the outer code, the 2-secure finger-
printing codes obtained are much shorter than the 2-secure codes obtained via
the BS-CS construction. For M users the codeword length of this proposal is
only M , and the same technique described in BS-CS can be used to reduce the
lengths to logO(1)(M). CND can be used as outer decoding.

4.2.5 Scattering and Dual Hamming codes

In [SDF02b] and [SDF02a] Sebe and Domingo-Ferrer construct 3-secure codes
that given a relatively small number of possible buyers are much shorter than
the general BS-CS construction. The basic idea is to compose a new kind
of code, which is called scattering code, with a dual Hamming code. The
scattering codes where designed in order to fight three pirates. It is used as an
inner code for concatenation to reveal the most frequent bit value among the
pirates, regardless of the pirate strategy. E.g. if the pirates see two ones and a
zero, then inner decoding outputs one with probability 1− ε.

This paper also shows that Hamming codes offer collusion security, as long
as the colluder’ strategy can be controlled.

In [Sch04b] it is proven that the construction in [SDF02a],[SDF02b] is inse-
cure against the optimal pirate strategy. Then it is shown how to build secure
schemes using scattering codes as inner codes and separating codes as outer
codes. This new construction has very good rates for a reasonable number of
users.

32

4.2.6 Separating codes

In [Sch03b] Schaathun proves that an asymptotically good family of (2, 2)-
separating codes is 2-secure with ε-error, where ε tends to zero with increasing
code size. This code also removes the risk of accusing an innocent user. On
the negative side, no efficient tracing algorithm for the code is designed. For
an overview of separating systems, see [Sag94].

33

34

Part II

The Simulation

35

36

Chapter 5

Introduction

This part of the paper will discuss the simulations done on the BS-CS scheme.
This introductory chapter gives some background information needed to un-
derstand the simulation, while Chapter 6 will give simulation results and all
conclusions made. Chapter 7 will mention some open problems for future study.

5.1 Background

The BS-CS paper gives formulas for calculating the code parameters such that
the scheme is secure with high probability. As mentioned in Chapter 4 these
formulas have been improved over the years. [Sch03a] gives a new error analysis
that permits the use of shorter codewords. A simulation on the BS-CS scheme
is interesting because all the parameters given by these formulas are based on
theoretical bounds, the scheme will be t-secure with ε-error. As far as we know,
no simulations on the BS-CS scheme exists. Hence the difference between the
error rate given by the bounds and the empirical estimate is unknown. We
will later see that this difference is difficult to find due to imprecise theoretical
bounds. But we don’t necessarily need to compare the simulation estimate
to the theoretical bounds. It can be just as interesting to study the behavior
of the error rate and running time when adjusting the code parameters. The
next chapter will use this strategy, and hopefully give new inside to the BS-CS
scheme.

5.2 What is performance?

Before the simulation results are presented it is important to discuss what
performance is, in relation to fingerprinting. The following are important per-
formance parameters in a fingerprinting scheme (and therefore important for
an distributor to be able to control):

• To be able to trace the pirates with high probability. The size of ε deter-
mines the probability.

37

CHAPTER 5. INTRODUCTION

• To be able to use as short fingerprints as possible. Shorter fingerprints
require less embedding capacity.

• To be able to handle as many colluding pirates as possible. This parame-
ter is a tricky one to set, as no codes are safe for an arbitrary t.

• Good running times, especially for the decoding algorithm.

In addition to these parameters a distributor must be able to control how many
buyers the fingerprinting system shall support (M).

Some of these are conflicting goals. A good error probability will lead to
longer codes and most likely longer running times. See Table 5.1 for an overview
of how the goals behave in relation to each other. The ↘ arrow (in the table)
indicates that some, but not all, increases in the value will give better results
(this observation is based on the results presented in Chapter 6).

Code parameter Size of n Size of ε Dec. alg. time

Increase in q ↑ ↓ ↑

Increase in r ↑ ↘ ↑

Increase in n2 ↑ ↓ ↑

Table 5.1: Conflicting goals in fingerprinting.

A fingerprinting scheme should be evaluated for each M , according to the
codeword length n, the error probability ε and the running time of the tracing
algorithm. Hence we use a couple of M -values for the simulations. As we
try different parameters we usually keep the n value constant to outline the
behavior of the error probability ε. If n is kept constant and the error rate
decreases, then we know that the code parameters used must be good. If
n varies in size the situation would be unclear if ε and n goes in different
directions. The running times given in Chapter 6 are the total running times
of the program. But tables giving the decoding time are also presented.

5.3 Simulation facts

So what do we need in order to be able to run simulations on a fingerprint-
ing scheme. We must of course implement the scheme. The C programming
language was used for this task, and this implementation will be extensively
covered in the implementation part of this paper. Here we just scratch the sur-
face to give some information needed before we look at the simulation results
in Chapter 6.

38

5.3. SIMULATION FACTS

5.3.1 Theory and Practice

This subsection will differentiate between some of the expressions used in the
BS-CS scheme contra some of the expressions used in the following chapters.
The implementation follows the same principles as the BS-CS scheme, but some
operations are not needed, while a different order of operation is used for others.
These changes represent nothing new, they are only implementation decisions
taken to support larger codes and better running times.

Code Generation
When we talk about code generation in the BS-CS scheme, we think of the
generation of the inner and outer codewords, and the concatenation of these.
But for an implementation this will not be effective. We don’t need to create
the full concatenated code book before a pirate collusion creates it’s hybrid
fingerprint. We only create and store the outer code book, and as the pirate
collusion wishes to make a hybrid fingerprint, the inner codewords are gener-
ated based on the outer codewords. So what we call code generation in the
simulation is just the generation of the outer code book. The creation of the
inner codewords will be carried out when the pirate collusion makes it’s hybrid
fingerprint. And the creation of the concatenated code will never take place,
as we now will see.

Making/Tracing of the Hybrid Fingerprint
The outer code book has been generated and it is time for a pirate collusion
to create it’s hybrid fingerprint. To do this the collusion will look at one inner
codeword at a time, based on the numbers in the outer codeword. So instead
of finding the feasible set of all the concatenated codewords in an pirate col-
lusion, the program finds the feasible set of one concatenated codeword block
at a time. After the feasible set is found for one block, the collusion generates
a block of the hybrid fingerprint. The program then traces this block at once,
using Algorithm 1 (from the BS-CS scheme). This will return a number within
the outer code alphabet, which is then given as input to the outer code decod-
ing. This outer code decoding will be carried out after all blocks of the hybrid
fingerprint are generated, and traced with the help of Algorithm 1. So essen-
tially the implementation only breaks one large operation into many smaller
parts. We split the operations on the concatenated code into operations on the
inner codewords. Hence we never create the concatenated code.

Embedding and Random Permutation
In a real system we need to embed the fingerprint in a digital object, and then
extract it before we use the tracing algorithm. This is not necessary for sim-
ulation purposes. Here our only interest is how to make and trace the hybrid
fingerprint. Since we use the marking assumption, the embedding is irrelevant.
The only marks that are detectable by an collusion are the marks that differ
in their fingerprints. So we skip the embed/extract part of the scheme.

39

CHAPTER 5. INTRODUCTION

The same goes for the permutation on the fingerprints. The permutation
shuffles the marks in the fingerprint to hide the correspondence between the
marks and their positions in the fingerprint. This disguise is not needed for the
simulation because the pirate strategy is a random generation of binary digits
for the detectable marks. The permutation will not influence the simulation
results in any way, so it is skipped.

5.3.2 Pirate Strategy

The BS-CS scheme is not designed with a particular pirate strategy in mind,
it protects against any attack provided that the marking assumption holds.
Under the marking assumption no strategy can raise the error probability of
the scheme to more than ε. Hence none of the simple attacks described in
Section 2.2.2 works against the BS-CS scheme, so all strategies used in the
simulation should give estimates to the error probability no worse than the
error bound specified in the BS-CS paper.

The pirate strategy used for the simulations is a random, independent gen-
eration of binary digits for all detectable marks. This strategy is the same
as Yoshida [YII98] uses in his error analysis. Yoshida proves that the BS-CS
scheme is much better than specified for this particular attack. It is important
to remember that the results presented in Chapter 6 is based on this particular
pirate strategy. Other strategies would most likely lead to other results.

Simulations on other pirate strategies are left as future work. See Chapter
7 for more on this.

5.3.3 The Simulation input

The simulation input can be divided in three: The variables that specify the
amount of simulation-runs, the code parameters and the collusion-size parame-
ter.

Simulation parameters:
We must be able to control how the simulation will behave. That is, how many
times the given parameters will be tested by the simulation. We have two
parameters that specify how extensive the simulation will be:

• The Number of Outer Code generations (NOC): This parameter controls
how many times the program generates a new outer code.

• The Number of Pirate Collusions (NPC): This parameter controls how
many pirate collusions that will make hybrid fingerprints on a given outer
code.

Together these give the total number of simulation-runs. Please note that a set
with NPC totally new collusions will be made for each outer code generation.

40

5.3. SIMULATION FACTS

Example 9 We decide to make 500 outer codes, and let 100 pirate collusions
make a hybrid fingerprint on each of these outer codes. Then we have the
parameters:

NOC = 500, NPC = 100

Hence a total of 500 · 100 = 50000 simulation-runs.

The simulation parameters used in Chapter 6, and why these are chosen, are
outlined in Section 6.2.

Code parameters:
The code parameters decide how the inner and outer code will look like, hence
the input of different parameter sizes will provide us with the results we need
in order to draw conclusions. The code parameters are:

1. The inner code parameters: The number of codewords q, and the replica-
tion factor r. The replication factor r and q together set the inner code
length: n1 = r(q − 1).

2. The outer code parameters: The number of codewords M , the alphabet
size q, and the code length n2.

The collusion size:
The number of pirates in an collusion must also be given as input to the pro-
gram. This is needed in order to create the appropriate pirate collusion sizes.
The collusion-size is denoted t.

5.3.4 The Simulation output

The purpose behind the simulation is to provide some overview on how good
the scheme really is when we use various input parameters. The following are
the main measures on the parameters, and therefore the simulation output:

1. The error rate: The amount of tracing errors made by the simulation.
2. The running time: The time used by the simulation.

To define an error in the simulation, we use the same notation as in Chapter
2, but for the simulation (and for the BS-CS scheme) exactly one user will be
outputted as guilty. The two types of errors are:

1. Type I error: No user is returned as guilty.
2. Type II error: An innocent user is returned as guilty.

The simulation output does not distinguish between these two types. An error
is here a combination of the two error types.

Example 10 If we have a total of 50000 simulation-runs the maximum num-
ber of errors is of course 50000. That is, the tracing fails for all the hybrid
fingerprints made. Such an error rate indicates the use of extremely bad para-
meters.

41

CHAPTER 5. INTRODUCTION

If the running time had been equal for all input parameters, our only concern
would be the fingerprint length and the error rate. But this is unfortunately not
the case, hence the error rate and the running time are most often conflicting
goals. See Section 5.2 for more on this. Chapter 6 will show that increased
parameters, and therefore longer running times, not always give better error
rates. This is especially true for the size of r.

5.4 Random number generator

An important aspect of the implementation is the use of a random number gen-
erator, or short RNG. This section will give an introduction, and then discuss
what the simulation requires from an RNG. Finally the RNG choice is made
and presented.

5.4.1 Introduction

Definition 9 Randomness is a condition in which any individual event in a
set of events has the same mathematical probability of occurrence as all other
events within the specified set.

Randomness and random numbers have always been used in one way or another,
for example in dice games. But when the time came to introduce randomness
into computers, problems emerged. It is very difficult to get a computer to
do something by chance, because all computers follows the instructions made
by programmers. No perfect solution exists, so no RNG is appropriate for all
tasks. We can divide the RNGs in two main classes:

• Pseudo-random number generators.

• True random number generators.

Pseudo-random number generators (PRNG) are not truly random, but com-
puted from mathematical formulas or taken from precalculated lists. The
pseudo-random generators are predictable if we know where in the sequence
the first number is taken from. Such a predictability can be both good and
bad, depending on the purpose of the PRNG. Cryptographic application should
avoid such generators if possible, because here the numbers should be truly un-
predictable. Since a PRNG is fast, it is perfect for Monte Carlo simulations.

For cryptographic applications we usually use true random number gen-
erators (TRNG). True random numbers are typically generated by sampling
and processing a source of entropy outside the computer. This source can be
everything from a keystroke to noise from a radio. A TRNG will usually be
much slower than a PRNG because more time is needed to process the extern
entropy.

42

5.4. RANDOM NUMBER GENERATOR

5.4.2 The requirements

The simulation needs an RNG at three stages:

1. Generation of the outer codes.
2. Generation of the pirate collusions.
3. Generation of the hybrid fingerprints.

Before we give the RNG requirements for the simulation, it is appropriate to
state some general requirements for a RNG. The following criterions are often
used to measure the performance of an RNG:

• Good Theoretical Basis: It is possible to prove mathematically how good
the performance is. Theoretical tests is known to give very reliable pre-
dictions of the performance, but cannot guarantee good empirical perfor-
mance (only a reliable forecast). Examples of such tests are the Discrep-
ancy test, the Spectral test and the Weighted spectral test.

• Pass empirical statistical tests: These tests are prototypes of simulation
problems. We test the RNG against various problems, and examine the
quality of the output. No RNG passes all tests, hence we must decide the
importance of the tests based on our use of the RNG. Examples of such
tests are the famous Diehard test, the Load test and the NIST test.

• Long period: Long period before it repeats the numbers it generates.
This will make it harder to predict the numbers generated.

• Efficient: Short running time.
• Repeatable: With the same seed, the RNG will create equal numbers.

This is good for some applications and bad for others. It is important
in scientific experiments, where it is necessary to be able to replicate the
results made in order to view them as valid data.

• Portable: Easy to implement on different hardware and operating sys-
tems.

For the simulations in this paper we emphasize the criterions: Efficient and
long period. The amount of numbers that will be created is high, so a slow
RNG is out of the question. And because the amount is high, the period
also is important. The size of the period needed will now be discussed. This
calculation is done with numbers significantly higher than the actual simulation
parameters, and it is independent of the number of bits in each number to be
generated (a period of 10 will therefore generate 10 numbers, regardless of the
number size, before it repeats itself).

All the parameters defined in Section 5.3.3 are important for the size of the
period:

1. M : The number of codewords in each outer code is set to 230.
2. n2: The outer codeword length is set to 215.
3. t: The size of the pirate collusion is set to 210.

43

CHAPTER 5. INTRODUCTION

4. NOC: The number of new outer codes generated is set to 220.

5. NPC: The number of pirate collusions on every new outer code is set to
220.

We first discuss the period needed by the generation of all the outer code books.
For each outer codeword M = 230 we must generate n2 = 215 numbers. Hence
a NOC value of 220 will give a total of 230 · 215 · 220 = 265 numbers to generate.

The generation of the pirate collusions needs a period of 250. For each new
outer code generated (NOC = 220), generate a given number of collusions(NPC
= 220) with t = 210 pirates in each. 220 · 220 · 210 = 250.

The generation of the hybrid fingerprint needs a period of 255. For each
NOC, NPC collusions will generate a pirate fingerprint of length n2. 220 · 220 ·
215 = 255.

Hence 265+250+255 numbers are generated. The real number of generations
in the simulations will be less than this, but to be on the safe side we choose a
RNG with a period better than this estimate. The next subsection will discuss
some of the RNG tried, and the choice for the simulation. This choice will have
a significantly larger period than strictly needed.

5.4.3 The choice

Both PRNG and TRNG generators have been tested. First we will discuss two
of the generators considered, then the choice is presented.

rand()
The rand() generator is a standard C-library function, which returns a pseudo-
random integer between 0 and a MAX constant. A seed value is specified with
the function srand(). If the same seed value is given more than once as input,
then the same number sequences is generated by rand(). The standard does not
say anything about the period of this generator, so it is unclear if the period is
large enough for the simulations presented in this paper. On the positive side,
it is definitely a fast generator.

/dev/(u)random
The generators /dev/random and /dev/urandom are files in a unix system that
is a source for random bytes generated by the kernel random number generator
device. These generators create high quality random numbers for cryptographic
purposes. The /dev/random generator is a TRNG, while the /dev/urandom
generator is a mixture of a TRNG and a PRNG.

The /dev/random interface only returns random bytes when the correct
amount of entropy has been collected. So if there is too little entropy to produce
the requested number of bytes, /dev/random will block until more entropy can
by collected. This blocking will lead to long running times when many random
numbers are needed.

44

5.4. RANDOM NUMBER GENERATOR

The /dev/urandom interface returns bytes regardless of the amount of en-
tropy available. If there is too little entropy, it switches over to the use of a
hash function to produce more pseudo-random bits. Hence the /dev/urandom
generator is less safe, but much faster than /dev/random.

Mersenne Twister - The choice
Since the period of the rand() generator is unknown to us, and the /dev/
(u)random generators are too slow, we picked a PRNG called Mersenne Twister,
which is due to Makoto Matsumoto and Takuji Nishimura [MN98]. This gen-
erator is based on linear recursion, hence it is not cryptographically secure. A
pseudo-random number generated by a linear recursion is insecure, since we
can predict the rest of the output if we have a sufficiently long subsequence of
the output. Fortunately the period of this generator is 219937 − 1 and a 623-
dimensional equidistibution property is assured. Another great aspect with this
generator is that it is very fast, and the use of memory is efficient (it consumes
only 624 words of working area). Mersenne Twister has passed many stringent
tests, including the Diehard test and the Load test.

Comparison of the generators
This comparison, as the only one in this paper, was executed on a Intel Pen-
tium Centrino 1.4 laptop, with 512 MB ram. The reason for this is simple,
the cluster used for all other simulations has no extern input, so the use of
dev/random is impossible (/dev/urandom did not work either).

Generator Generation of the outer code

rand() 4 sec.
/dev/random -
/dev/urandom 8 min.
Mersenne Twister 5 sec.

Table 5.2: Running times for the RNGs, with parameters M = 212, q = 30,
n2 = 1000, NOC = 1 and NPC = 1

We see from the simulation that the rand() simulation is the fastest one,
closely followed by the Mersenne Twister. /dev/urandom uses significantly
longer time, while /dev/random blocks until input is given (so a good estimate
on this generator is difficult to achieve).

45

CHAPTER 5. INTRODUCTION

46

Chapter 6

The results

This chapter will discuss the results found through the simulations on the BS-
CS scheme. We will look at the error rates and running times given various
code parameters, but first some formulas for calculating these parameters are
given.

6.1 The formulas

The BS-CS scheme provides formulas for calculating the parameters needed to
achieve a t-secure fingerprinting scheme with ε-error. Improvements on these
bounds exist, among these the results presented by [Sch03a] (HGS). The fol-
lowing subsections will present and compare these formulas.

6.1.1 BS-CS formulas

The BS-CS formulas give a t-secure (n,M) code with ε error, if q = 2t and

n2 = d2t log 2M
ε e, r = d2q2 log 4qn2

ε e

n1 = r(q − 1), n = n1 · n2

6.1.2 HGS formulas

The HGS formulas give a t-secure (n,M) code with ε error, if q = 2t and

n2 = max{− log ε1,log M−log ε2}
D(1

t+1
|| 1

2t
)

, r = d2q2(3 + 2 log t)e

n1 = r(q − 1), n = n1 · n2

where ε1 = ε/2, ε2 = ε/2

Here D(x||y) is the relative entropy defined as follows:

D(σ||p) = σ log
σ

p
+ (1− σ) log

1− σ

1− p

47

CHAPTER 6. THE RESULTS

6.1.3 Notes on the formulas

The two formula definitions given in the previous sections give different code
lengths. This fact will first be outlined with an example, then a closer look at
the r and n2 parameters will be given:

Example 11 Let ε = 10−10, t = 10, M = 2t and q = 2t.
The BS-CS formulas give: r = 39465, n1 = 749835, n2 = 885, n = 663603975.
The HGS formulas give: r = 7716, n1 = 146604, n2 = 2139, n = 313585956.

We see that the parameters calculated by the HGS formulas are good improve-
ments, with a total code length only half the size of the original formula. Later
in this section we will see that the ε-value determines the relationship between
the lengths.

The r parameter.
If we compare the formulas given in order to calculate r, we see that the for-
mula in the BS-CS scheme contains the ε and n2-values. That is, the size of r
partly depends on the size of ε and n2. For the HGS formula, r only depends
on q and t. This fact will always favor the HGS formula, but the effect is more
noticeable as the ε-value decreases. Table 6.1 shows that as the ε-value moves

ε r (BS-CS) r (HGS)

10−1 14248 7716
10−5 25635 7716
10−10 39465 7716
10−15 53120 7716

Table 6.1: r-values for BS-CS and HGS with t = 10 and M = 2t

towards zero, the BS-CS r-value will increase while the HGS r-value is static.
Even with an ε = 10−1, the r-value for the BS-CS formula is twice as high as
the r-value calculated with the HGS formula.

Simulation results presented later in this chapter will state that the r-value
calculated for both these formulas are unnecessary high. The security can be
maintained with much smaller r-values.

The n2 parameter.
The formulas for calculating the outer codeword length n2 also give interesting
differences. The HGS formula calculates the lowest r parameter, but for cal-
culating the n2 parameter the victory goes to the BS-CS formula. Table 6.2
shows some n2 values for different sizes of ε. We see that the BS-CS numbers
are less then half the size of the HGS numbers. And the difference between the
numbers increases as the ε-value decreases.

48

6.1. THE FORMULAS

ε n2 (BS-CS) n2 (HGS)

10−1 287 693
10−5 553 1336
10−10 885 2139
10−15 1217 2942
10−20 1549 3745

Table 6.2: n2 values for BS-CS and HGS formulas with t = 10 and M = 2t.

ε Formula n2 r n

10−1 BS-CS 287 14248 77694344
10−1 HGS 693 7716 101596572

10−2 BS-CS 353 17144 114984808
10−2 HGS 854 7716 125199816

10−3 BS-CS 420 20002 159615960
10−3 HGS 1014 7716 148656456

10−4 BS-CS 486 22828 210793752
10−4 HGS 1175 7716 172259700

10−5 BS-CS 553 25635 269346945
10−5 HGS 1336 7716 195862944

Table 6.3: Sample lengths for t = 10 and M = 2t.

The conclusion
The two approaches we have looked at here are the BS-CS scheme and an im-
provement. We see from Table 6.3 that the drawback of an large n2 causes the
HGS formulas to give longer code lengths when the ε-value is high. But as the
ε-value decreases, the HGS formulas give better code lengths, and the differ-
ence in the lengths will grow as ε decreases. This is caused by the significant
increase in the BS-CS r-values. For the BS-CS scheme both parameters grow,
for the HGS scheme only n2 grows.

The HGS formulas give a larger n2-value and a shorter r than the original
BS-CS scheme. We will later see that this is significantly more secure than the
contrary.

49

CHAPTER 6. THE RESULTS

6.2 NOC and NPC

This section will give some examples on how the simulation is affected by
the NPC and NOC variables. How will the simulation times and error rates
behave if these variables are adjusted? Table 6.4 provide some inside. Here
all adjustments give approximately the same total number of simulation-runs.
For the case t = 10 the total number of simulation-runs are 5 · 107, for the case
t = 20 it is 5 · 104. Table 6.4 shows that the adjustments mainly affect running

t q NOC NPC Errors Error rate Running time

10 20 10000 5000 2326 4.65 · 10−4 29.55 hours
10 20 7071 7071 2357 4.71 · 10−4 29.32 hours
10 20 5000 10000 2434 4.87 · 10−4 29.16 hours

20 100 500 100 24 4.8 · 10−4 21.17 hours
20 100 224 224 26 5.2 · 10−4 19.03 hours
20 100 100 500 27 5.4 · 10−4 17.53 hours

Table 6.4: M = 2t, n2 = 200, r = 5, and NOC · NPC simulation-runs.

times, this is especially true for the M = 220 case. It looks like a large NOC
gives better error rates, and for this no good reason could be found (we have
also done simulations on two other sets of NOC/NPC values, and they gave the
same results). In theory the error rate should be independent of the number of
collusions that creates hybrid fingerprints on each code. A good idea could be
to examine this result more thoroughly, by executing more simulations on each
of the rows in the table, and examine each result against the average value.
Then a more trustworthy result would have been achieved.

As we increase the NOC parameter and decrease the NPC parameter, we
will get longer running times. A look at the outer decoding will explain this.
The input to the outer decoding will be the outer codewords returned from
the inner decoding for all collusions. The outer decoding will then compare
each of these codewords against all codewords in the code book. So when the
NOC value is small and the NPC value is large, the outer decoding will be
faster because more returned outer codes will be compared against the outer
codewords in the code book at a time. Hence less runs (NOC runs) through
the code book is necessary. This will give a more significant improvement for
the case M = 220, because here the code book is large.

6.3 ε - The error rate

The codes which are t-secure with ε-error enables a distributor to capture a
member of a collusion P with probability at least 1− ε. A small ε is good for

50

6.4. M - NUMBER OF USERS

the security, but bad for code lengths and running times.
An ε-value of 10−10 is often used in the fingerprinting literature to ensure

codes with a low error probability, but this size has some drawbacks for simu-
lation purposes:

• Running times will be long due to large parameters (some of the code
parameters are calculated with ε as one of the variables).

• The number of simulation-runs will increase. The purpose behind the
simulation is to find an estimate to the error probability. This estimate
will most likely be much better than what the bounds specify. So with
an ε = 10−10, we must run the simulation more than 1010 times.

The combination of these gives a simulation-run with infeasible running time.
Hence the original goal of finding the difference between the theoretical bounds
and the simulation estimate becomes a difficult one. The following example
will outline this fact:

Example 12 For the ε-value 10−10 the shortest code is calculated by the HGS
formulas. We have t = 10, M = 2t, q = 2t, n2 = 2139 and r = 7716. One
simulation-run with NOC = 1 and NPC = 1 will only take 5 seconds. But
an estimate for a simulation with a total number of 1010-runs is approximately
1522 years. This is of course impossible.

6.3.1 Conclusion

The original goal was to compare the theoretical error bounds with the simu-
lation estimate. But as shown, the use of the formulas give infeasible running
times, even if the ε-value is high.

So instead of comparing theoretical bounds with simulation estimates we
will choose parameters that outline the behavior of the error rates and the
running times. Hence the new goal is to provide patterns that tell something
about the relationship between the parameters and the error rates/running
times returned. Is it for example more efficient to increase n2, in error rates
and running times, then to increase r? The answer to this and similar questions
will be given later in this chapter.

6.4 M - Number of users

We use fingerprints to mark digital copies uniquely for every user. One of the
most important aspects is therefore to ensure that the code used supports the
number of potential buyers. In the real world an impressive number of buyers
would be 109, but a more realistic number may be in the range 106 − 108. It is
vital to keep the number of users M as low as possible, because an increase in
M will affect the simulation time negatively in several ways (Table 6.5 outlines
the times used by outer code generation and tracing for M10 and M20).

51

CHAPTER 6. THE RESULTS

t n2 r q OC gen. time Tracing time

10 287 14248 20 < 1 sec. < 1 sec.
20 973 65825 40 83 sec. 40 sec.

Table 6.5: Outer code generation and tracing running times for different sizes
of M . BS-CS formulas used with M = 2t, ε = 10−1, NOC = 1 and NPC = 1.

• To support M number of buyers it is necessary to generate at least M
outer codewords. As M grows, so does the time needed to generate the
outer code.

• If we use the BS-CS or HGS formulas longer outer codewords will be
created because here the n2-value partly depends on the size of M . Hence
more outer codeword numbers must be generated by the RNG (therefore
the running time increases).

• If the outer codeword lengths increase, the number of inner codeword
creations also increase, hence more time is needed to create the hybrid
fingerprint. The M value itself does not affect the times needed to create
the hybrid fingerprint, because we only compare t codewords to find the
feasible set, not M codewords.

• A larger M will generate a larger outer code book, hence more time is
needed by the tracing process. The entire code book, an M · n2 matrix
must be compared to the hybrid fingerprint.

The M parameter is adjusted only to provide for more users, it will not
give better error rates. In fact an higher M -value needs larger code parameters
to be secure with the same probability as before. The M values used in the
simulation are: M = 210 and M = 220. The case M = 230 was tried, but found
infeasible due to long running times. The use of different M values will give us
the opportunity to examine, and compare, the simulation results archived by
several M values. This will make the conclusions drawn more trustworthy.

6.5 t - Size of pirate collusion

A pirate collusion is a collection of pirates. These pirates compare their copies
in order to find marks that differ. They then set these detectable marks accord-
ing to a chosen pirate strategy to create a hybrid fingerprint. As the collusion
size grows, so does the possibility of detecting marks, hence a large collusion
can most likely discover more marks than a small one. This means that as the
collusion size t grows, so does the code parameters if we want to keep the code
t-secure with a good error probability. The results given by Table 6.6 and Table
6.7 outline the consequences of increasing the collusion size while keeping all
other parameter sizes. We see that the error rate increases drastically as the

52

6.6. R - THE REPLICATION FACTOR

t n2 r q Errors Error rate Running time

2 200 5 20 0 0 2.22 hours
5 200 5 20 0 0 2.24 hours
10 200 5 20 203 4.1 · 10−5 2.53 hours
20 200 5 20 1083331 2.1 · 10−2 4.39 hours
30 200 5 20 3316025 6.6 · 10−1 7.16 hours
40 200 5 20 4126900 8.2 · 10−1 10.57 hours

Table 6.6: Differences in error rates and running times when adjusting the
collusion size t. M = 210, NOC = 5000 and NPC = 1000.

t n2 r q Errors Error rate Running time

5 200 5 40 0 0 26.30 hours
10 200 5 40 0 0 27.22 hours
20 300 5 40 3878 7.8 · 10−2 33.02 hours
40 300 5 40 48314 9.6 · 10−1 33.36 hours
60 300 5 40 49790 9.9 · 10−1 33.03 hours
80 300 5 40 49988 9.9 · 10−1 33.10 hours

Table 6.7: Differences in error rates and running times when adjusting the
collusion size t. M = 220, NOC = 1000 and NPC = 500.

pirate collusion size grows marginally. The running time also increases, due to
the fact that more codewords must be compared to create the feasible set. In
the fingerprinting literature it is common to set t to be log M , hence this is
done for the remaining simulations in this chapter.

6.6 r - The replication factor

The replication factor r specifies the number of duplications in the inner code.
And together with q it sets the inner codeword length, n1 = r(q − 1). In this
section we will show how adjustments in the r-value will affect the error rate
and the running times. In theory a larger r will give better error probability,
but this section will show that this is not entirely true.

6.6.1 The simulation tables

Variations in r. Table 6.8 and Table 6.9 give error rates and running times
for the simulations done with various r-values. The n value is not held constant
here, because adjusting only the r parameter better outlines the behavior of

53

CHAPTER 6. THE RESULTS

r Errors Error rate Running time

7716 159 3.18 · 10−5 667.45 hours
3858 167 3.34 · 10−5 331.34 hours
1000 157 3.14 · 10−5 86.65 hours
500 164 3.08 · 10−5 44.32 hours
100 189 3.78 · 10−5 10.53 hours
10 161 3.22 · 10−5 3.12 hours
9 191 3.82 · 10−5 3.11 hours
8 152 3.04 · 10−5 3.12 hours
7 174 3.48 · 10−5 3.13 hours
6 185 3.70 · 10−5 2.53 hours
5 198 3.96 · 10−5 2.53 hours
4 357 7.14 · 10−5 2.53 hours
3 821 1.64 · 10−4 2.35 hours
2 5093 1.02 · 10−3 2.35 hours
1 212839 4.25 · 10−2 2.35 hours

Table 6.8: M = 210, t = 10, q = 2t, n2 = 200, NOC = 5000 and NPC = 1000.

r Errors Error rate Running time

37261 162 3.24 · 10−3 525.35 hours
18631 173 3.46 · 10−3 279.10 hours
1000 158 3.16 · 10−3 37.32 hours
500 157 3.14 · 10−3 28.46 hours
100 144 2.88 · 10−3 23.63 hours
10 146 2.92 · 10−3 22.50 hours
9 147 2.94 · 10−3 22.55 hours
8 174 3.48 · 10−3 22.56 hours
7 148 2.96 · 10−3 22.61 hours
6 159 3.18 · 10−3 22.14 hours
5 221 4.42 · 10−3 22.10 hours
4 416 8.32 · 10−3 22.13 hours
3 949 1.89 · 10−2 22.14 hours
2 4883 9.76 · 10−2 22.06 hours
1 31449 6.28 · 10−1 22.12 hours

Table 6.9: M = 220, t = 20, q = 80, n2 = 200, NOC = 500 and NPC = 100.

the error rate. The n2 value is chosen to give suitable error rates and running
times. The largest r-values 7716 and 37261 are the r-values calculated by the

54

6.6. R - THE REPLICATION FACTOR

HGS formula. The q-value used in the case M = 220 is 80. This value is also
chosen to give suitable error rates and running times.

q vs. r. Table 6.10 and Table 6.11 give error rates and running times for
the simulations when the sizes of q and r are modified, while keeping the total
length n constant.

q r Errors Error rate Running time

1001 1 914 1.82 · 10−4 2.45 hours
501 2 19 3.8 · 10−6 2.18 hours
334 3 7 1.4 · 10−6 2.09 hours
251 4 5 1 · 10−6 2.07 hours
201 5 7 1.4 · 10−6 2.03 hours
168 6 6 1.2 · 10−6 2.01 hours
144 7 34 6.8 · 10−6 1.59 hours
126 8 61 1.22 · 10−5 1.59 hours
112 9 114 2.28 · 10−5 1.57 hours
101 10 191 3.82 · 10−5 1.57 hours

Table 6.10: M = 210, t = 10, n2 = 50, NOC = 5000 and NPC = 1000.

q r Errors Error rate Running time

1001 1 1714 3.42 · 10−2 12.04 hours
501 2 137 2.74 · 10−3 11.52 hours
334 3 88 1.76 · 10−3 11.50 hours
251 4 138 2.76 · 10−3 12.05 hours
201 5 278 5.56 · 10−3 11.47 hours
168 6 704 1.4 · 10−2 11.49 hours
144 7 1484 2.96 · 10−2 12.06 hours
126 8 2758 5.51 · 10−2 12.04 hours
112 9 4835 9.67 · 10−2 12.06 hours
101 10 7284 1.45 · 10−1 12.03 hours

Table 6.11: M = 220, t = 20, n2 = 100, NOC = 500 and NPC = 100.

55

CHAPTER 6. THE RESULTS

n2 r Errors Error rate Running time

500 1 195 3.9 · 10−5 6.18 hours
250 2 392 7.84 · 10−5 3.11 hours
167 3 2574 5.15 · 10−4 2.10 hours
125 4 12540 2.51 · 10−3 1.53 hours
100 5 40550 8.11 · 10−3 1.31 hours

Table 6.12: M = 210, t = 10, q = 21, NOC = 5000 and NPC = 1000.

n2 r Errors Error rate Running time

500 1 521 1.04 · 10−2 54.15 hours
250 2 911 1.82 · 10−2 29.32 hours
167 3 3438 6.87 · 10−2 20.30 hours
125 4 9358 1.87 · 10−1 16.15 hours
100 5 17331 3.46 · 10−1 14.06 hours

Table 6.13: M = 220, t = 20, q = 81, NOC = 500 and NPC = 100.

n2 vs r. Table 6.12 and Table 6.13 give error rates and running times for the
simulations when the sizes of n2 and r are modified, while keeping the total
length n constant.

6.6.2 The analysis

Variations in r. First we examine the error rates given by Table 6.8 and
Table 6.9. The formulas stated by the BS-CS and HGS papers give bounds on
the size of r. If the r-value used is lower than this bound, then the codeword
used is not proven to be t-secure with ε-error. But as the tables show, the error
rate is approximately the same for r = 5 as for the large r-value (7716). This
means that the bounds given by the two approaches are very unprecise, with
the use of this particular pirate strategy. As Figure 6.1 outlines, the error rate
is similar for most values of r. But as r passes 5 and reaches towards 1, the error
rate drastically increases. This fact is occurring for both cases of M , hence it
should be a trustworthy result. The most obvious advantage of a decrease in
the r-value is the fact that the codeword length will decrease. The case t = 10
gives codeword length n = 29320800 if r = 7716, and length n = 19000 if
r = 5. The decrease in codeword length will also give the advantage of shorter
running times. From Table 6.8 and Table 6.9 we see that the amount of time
saved with the use of a small r is huge.

56

6.6. R - THE REPLICATION FACTOR

Figure 6.1: The size of r and the number of errors generated.

q vs. r. We now turn our attention to Table 6.10 and Table 6.11. These
tables will outline a more precise estimate for the best r-value to choose. The
tables show that the best cases are different for the two M -values. For M = 210

the best solution is to set r = 4 and q = 251, while the case M = 210 gives
the optimal solution r = 3 and q = 334. But this result is not good enough
to draw a final conclusion, because the r-values close to the optimal ones are
only slightly worse. From the first tables considered we know that the error
rates drastically increase if we set r < 4. This fact is also seen here as the error
rate increases up to r = 4 (and r = 3), then it decreases even if the q-value
continues to grow.

n2 vs. r. We now look at Table 6.12 and Table 6.13. Here we see that the
error rate gets better even if the r-value reaches 1. This means that an large
n2-value will be very important for the error rate.

A larger n2 will also give significantly longer running times. As we double
n2 we also double the running time (the change from r = 2 to r = 1 will not
affect the running times significantly).

Running times. Table 6.14 and Table 6.15 will outline the time used by
different parts of the simulation as r grows.

• We see that the generation of the outer code is equal for both cases of r.
This is due to the fact that the size of the outer code is independent of
the r-value. For the case M = 220 the code book is larger, so longer time
will be used to create it.

• The generation of the hybrid fingerprint is shown to be time consuming.
And we can see that the dramatic difference between large and small r

57

CHAPTER 6. THE RESULTS

Task Time (r = 5) Time (r = 1000)

Gen. of outer code 1.20 min. 1.20 min.
Gen. of hybrid fingerprint 58.35 min. 78.29 hours
Inner decoding 6.33 min. 8.21 hours
Outer decoding 1.51 hours 2.41 hours

Table 6.14: Running times for different parts of the simulation. t = 10, M = 2t,
q = 2t, n2 = 200, NOC = 5000 and NPC = 1000.

Task Time (r = 5) Time (r = 1000)

Gen. of outer code 2.08 hours 2.08 hours
Gen. of hybrid fingerprint 20.21 min. 12.08 hours
Inner decoding 8.03 min. 1.01 hours
Outer decoding 18.34 hours 19.01 hours

Table 6.15: Running times for different parts of the simulation. t = 20, M = 2t,
q = 80, n2 = 200, NOC = 500 and NPC = 100.

mainly is due to this generation (for the case M = 220 the outer code
tracing is more time consuming).

• The inner decoding is fast for both cases of r, and for both cases of M .
Algorithm 1 take longer inner codes as input when r = 1000, hence the
time needed will increase.

• The outer decoding will be approximately equal for both cases of r be-
cause the outer decoding is independent of r. The outer decoding de-
pends only on the sizes of M and n2, therefore more time are needed
when M = 220.

The example below will outline the difference in inner code lengths for two
different r-values, and why this is time consuming.

Example 13 If r = 1000 and q = 20 then n1 = 1000(20− 1) = 19000.
If r = 10 and q = 20 then n1 = 10(20− 1) = 190.
We see that the difference in inner codeword length is huge. And if we look at
the total length, the time saved by cutting the r becomes apparent. Let n2 = 200,
then 19000 · 200 = 3800000 for r = 1000, and 190 · 200 = 38000 for r = 10.

6.6.3 The conclusion

Both cases of M show that the maximum value of r should be somewhere in
the range of 5− 10. The fact that we can use smaller r-values will give shorter
codewords, hence significantly better running times are achieved. And this

58

6.7. N2 AND Q

result also stress the fact that BS-CS and HGS formulas give bounds for r that
are much higher than necessary. The BS-CS scheme is therefore much better
than proven by these two approaches, given this particular pirate strategy.
Yoshida [YII98] also pointed out that the r-value should be much lower than
proven by the original scheme, but it is unknown to us if his bound is far from
the results achieved here.

The observation done in this section indicates that the error rate will not be
affected if we use a smaller r value with the simulations. The shorter running
times achieved by this observation makes it possible to use larger values for the
other code parameters in the simulations that follows.

6.7 n2 and q

The parameter n2 is the length of the outer codewords, it decides how many
inner codewords the concatenated code is composed of. The numbers in the
outer codeword must be within the alphabet q, where each number points to
a codeword in the inner code. As mentioned the size of n2 depends on the
size of the ε-value for both the BS-CS and HGS formulas. This will cause the
n2-values calculated by the formulas to be infeasible for simulation purposes,
hence we instead use n2-values that give reasonable running times and error
rates.

The q parameter is the glue that connects the inner code together with the
outer code. For the inner code it determines the number of codewords, for the
outer code it is the alphabet. So each unique number in the outer code points
to one inner codeword. The q parameter also determines the length of the
inner codeword, together with r (n1 = r(q − 1)). The literature often set q to
be 2t, but in this section the point is to examine the results made by different
q-values, so here various q-values will be used.

6.7.1 The simulation tables

q vs. n2. Table 6.16 and Table 6.17 give error rates and running times for
the simulations when the sizes of n2 and q are modified, while keeping the total
length n constant.

59

CHAPTER 6. THE RESULTS

n2 q Errors Error rate Running time

1000 6 79680 1.59 · 10−2 13.37 hours
500 11 157 3.14 · 10−5 6.31 hours
250 21 10 2 · 10−6 3.35 hours
125 41 12 2.4 · 10−6 2.16 hours
40 126 864 2.73 · 10−4 1.18 hours
20 251 14263 2.85 · 10−3 1.06 hours
10 501 113384 2.26 · 10−2 0.59 hours
5 1001 829917 1.65 · 10−1 0.55 hours

Table 6.16: M = 210, t = 10, r = 5, NOC = 5000 and NPC = 1000.

n2 q errors Error rate Running time

1000 21 5171 1.03 · 10−1 113.23 hours
500 41 640 1.28 · 10−2 59.66 hours
250 81 959 1.91 · 10−2 26.39 hours
160 126 2027 4.05 · 10−2 17.37 hours
125 161 3550 7.1 · 10−2 14.23 hours
80 251 7674 1.53 · 10−1 9.42 hours
40 501 18912 3.78 · 10−1 5.58 hours
20 1001 29100 5.82 · 10−1 4.11 hours

Table 6.17: M = 220, t = 20, r = 2, NOC = 500 and NPC = 100.

6.7.2 The analysis

n2 vs. q. We now examine the results given in the Tables 6.16 and 6.17. The
first observation is that an high n2/low q will give better error rates and worse
running times than the opposite. The use of a low n2-value will not give good
error rates even if the q-value is high. It is interesting to see that the best error
rate is achieved when q = 2t + 1 for both cases of M . This indicates that the
choice of q = 2t taken in the literature probably is a vise one. If the q-value
decreases below 2t, the error rates will grow significantly even if the n2-value
is doubled.

60

6.7. N2 AND Q

Running times. Table 6.18 and Table 6.19 will outline which parts of the
simulation that cause changes in running times when adjusting n2 and q.

Task Time(n2 =
1000 and
q = 6)

Time(n2 = 5
and q = 1001)

Gen. of outer code 10.40 min. 2 sec.
Gen. of hybrid fingerprint 2.36 hours 42.15 min.
Inner decoding 14.06 min. 9.35 min.
Outer decoding 10.06 hours 3.10 min.

Table 6.18: Running times for different parts of the simulation. t = 10, M = 2t,
r = 5, NOC = 5000 and NPC = 1000.

Task Time(n2 =
1000 and
q = 21)

Time(n2 = 20
and q = 1001)

Gen. of outer code 11.26 hours 14.58 min.
Gen. of hybrid fingerprint 5.23 min. 2.53 min.
Inner decoding 8.12 min. 1.20 min.
Outer decoding 102.03 hours 3.16 hours

Table 6.19: Running times for different parts of the simulation. t = 20, M = 2t,
r = 2, NOC = 500 and NPC = 100.

• We see that the generation of the outer code is faster when n2 is low.
The code book is smaller, only M · n2. The outer code generation is
independent of the q-value.

• The outer decoding will be faster when the n2-value is low, because here
the code book is small. The outer decoding is independent of q. It
depends only on the size of M and n2.

• We see that every part of the scheme use more time when n2 is high.

6.7.3 The conclusion

The n2 parameter is more important for error rates than the q parameter. But
it is important to stress the fact that the q parameter should not be too low. An
q-value below the standard 2t will give increased error rates even if we double
n2. Since the running times increase slowly for the q-value, it might be a good
solution to increase the q-value in a real system.

61

CHAPTER 6. THE RESULTS

6.8 A short comparison

This subsection will try to give an answer to one of the initial goals. Is the
parameters calculated by the BS-CS formulas higher than necessary to provide
security with a certain probability? In order to answer this question we com-
pare the theoretical bound defined in the BS-CS scheme with an simulation
estimate. All the parameters used here, except the r-value, are calculated from
the formulas defined by the BS-CS scheme. The original r parameter gives
infeasible simulation times, so this can not be used. But as we have shown,
the original r-value gives no better error rates than an r-value of 5. Since a
small r will make the simulation much faster, we choose to use r = 5. We see

n2 q r t Errors Error rate Running time

287 20 5 10 28 5.6× 10−7 41.33 hours

Table 6.20: M = 2t, ε = 10−1, NOC = 10000 and NPC = 5000.

that with a total of 5 · 107 simulation-runs the number of errors returned are
28. The parameters used guarantees that no errors occurs, with probability
1 − ε. The result above shows that the probability of success is much better,
1− 5.6× 10−7. Hence we see that the difference between the theoretical bound
and the empirical estimate is significant, even after the r-value is ‘corrected’
according to our simulation results.

6.9 Summary

The most important result achieved in this paper is the observation that much
shorter r-values can be used. This will give just as good error rates, while using
much shorter codewords (will also result in better running times).

A small increase in q will give improved error rates with a low cost in running
times. Hence it is recommended to use a q-value above the standard q = 2t. A
q-value below 2t should be avoided (this will give a significant increase in the
error rates).

An increase in the n2-value is good for the error rates, but extremely bad
for running times. So how to set this parameter will be a trade-off between
long running times and good error rates.

If we compare the BS-CS and HGS formulas, we see that the HGS formulas
are more secure because it gives larger n2-values and shorter r-values than
the BS-CS formulas. But since we know that shorter r-values can be used,
with equal error probability, the HGS formulas will actually provide a more
unprecise bound (higher n2-value then BS-CS). Since Section 6.8 shows that
the BS-CS formulas are unprecise, it is given that the HGS formulas must be

62

6.9. SUMMARY

even more unprecise.

63

CHAPTER 6. THE RESULTS

64

Chapter 7

Open problems

This chapter will discuss problems that are open for future study. Some of
these problems was initially planed to be a part of this paper, but due to the
time limit they are still unresolved.

7.1 Compare results against theoretical bounds

Several papers have stated improvements on the theoretical bounds presented
by the BS-CS scheme. Among these are the results presented by Yoshida
in [YII98]. His results is particularly interesting because he uses the same
pirate strategy as employed by the simulations in Chapter 6. Therefore it
would be very interesting to examine his results, and compare these to the
simulation results made in this paper. Do the simulation estimate give results
that are significantly better than Yoshida’s results? Because [YII98] came to
our attention at a late time (and also because the paper only exists in Japanese),
this question is left as an open problem. Some of Yoshida’s work is outlined in
[Mur04] (this paper is in plain English!).

It could also be interesting to take a closer look at the formulas from the
BS-CS scheme and the formulas from [Sch03a]. Are there any unnecessary
requirements in the error analysis?

7.2 Compare several schemes

Results made by simulations on different fingerprinting schemes would be very
interesting to examine. Chapter 6 gives the empirical results for the BS-CS
scheme given a particular pirate strategy, but the empirical results of other
schemes are still unknown. Therefore an implementation of another scheme,
for example the BBK scheme, would allow us to compare the empirical results
of the schemes. Such a comparison between schemes is of course interesting,
hence it is left as an open problem.

65

CHAPTER 7. OPEN PROBLEMS

Most of the program code listed in Appendix A is made with reuse in mind,
hence it should not be difficult to implement different fingerprinting schemes.

7.3 Compare pirate strategies

The results in Chapter 6 are only based on one particular pirate strategy. The
theoretical bounds presented by the BS-CS scheme ensures that the error rate
is lower than a given number with high probability. But it is not clear how
different pirate strategies would affect the error rate. The use of different pirate
strategies can give significant variations in the error rate below the specified
bound.

The implementation of other strategies should be relatively easy. We just
have to remove the random generation function and specify the new pirate
strategy.

66

Part III

The Implementation

67

68

Chapter 8

The program

This and the following chapters will describe the computer program imple-
mented to achieve simulation results. First some general program information
are given, then Section 8.3 will discuss the computer requirements. Disk and
memory usage will here be emphasized. A description of the program modules
and a short user manual will then be given. See Appendix A for the C code
listings.

8.1 The purpose of the program

The bsSim program is an implementation of the BS-CS scheme. The purpose
of this implementation is to collect simulation results which can be compared
to the results given by the theoretical bounds. The bsSim program outputs
the simulation running time and the amount of tracing errors made. Since the
program tasks are few, the number of options the user can provide also are few.
Therefore the user manual is rather simple.

8.2 Design and implementation

The original idea was to acquire simulation results with the use of large code
parameters as input, hence efficiency was important. Even when the case M =
230 was abandoned this efficiency demand stayed vital. The choice of C as
the programming language was the first decision made to support fast running
times. More details on the C language will be given in the next subsection.
The program was implemented from scratch, because no implementations of
fingerprinting systems were found. Other important decisions was the choice
of RNG and how to represent the inner and outer codes. Chapter 5.4 gives
information on the RNG chosen, while the code representation is discussed in
the sections 8.3, 9.4 and 9.5. All simulations were executed on a IBM e1350
cluster. This supercomputer has 172 AMD/opteron 250(2.4 Ghz) processors,

69

CHAPTER 8. THE PROGRAM

with 3 Gigabyte of memory per node (2 cpu’s per node). The operating system
on the cluster was Redhat Linux.

The program is split into modules that represent main tasks in the scheme,
such as generation of the outer code and tracing of the hybrid fingerprint. Each
of these modules will be explained in Chapter 9.

The program should be robust. Error checking is executed on input para-
meters, memory allocation and file communication. The user provides program
input at the command-line.

8.2.1 The C language

C is a middle-level language. Hence it combines the advantages of a high-
level language with the functionalism of the assembly language. C was initially
meant to be a language for systems programming, so it has many features that
can make it much harder to reuse or maintain. Among the disadvantages are:

• Lack of automatic memory management.
• It is platform dependent (it must be recompiled for every platform).
• The type checking is extremely bad.
• It has very weak support for modularization.
• The indirection operator (*) is described by the C creator as ‘an accident

of syntax‘.

But fortunately the language has a number of advantages too:

• Existing compilers are efficient.
• The lack of strong typing can also be an advantage, because it allows the

programmer to do many things that probably would be caught as errors
in a high-level language.

• Extremely easy to learn, with only 32 keywords.
• The operators for the bit operations are easily available and works on the

integer level such that fast running times are guaranteed.

8.3 Computer usage

Before the BS-CS scheme was implemented, a choice had to be made: Which
was most important, fast running times or the opportunity to provide for large
codes? The second alternative was chosen, hence the outer code had to be
stored at disk. This matter is discussed in detail in the following subsection.
The choice of compatibility with large codes does not mean that the running
times are unimportant. We will later see that the support for large codes only
increases the running times slightly.

It is not common to differentiate between disk and memory, usually the
term memory refers to all kinds of data storage on the computer. But here
we separate disk from memory because a comparison of running times between
the two will be given.

70

8.3. COMPUTER USAGE

8.3.1 Disk

This section will examine what the program must store to disk, and how much
disk capacity it needs given various parameters. The outer code book is the
only part of the scheme that must be stored to disk. We could of course store
the outer codewords in memory, but for large codes this would be infeasible.
The following example will give some insight:

Example 14 Let t = 30, M = 2t, q = 2t and n2 = 1000. Then we need 804
GB to store the outer code.

We see that the case M = 230 gives very large outer codes, even if the n2-value
is relatively small (compared to the values calculated by the BS-CS and HGS
formulas). This case is not used in the simulation because it leads to infeasible
running times.

Before we store an outer codeword to disk, we use an array as a buffer.
The amount of numbers that will be generated and stored for one outer code-
word are n2, so this array stores each number until n2 numbers are generated,
then the array will be written to disk. This procedure will be repeated for all
outer codewords. The buffer array has a block length of 32 bits. The variable
nrInBlock specifies the amount of numbers the program can store in one block.
As the next example will show, the alphabet size q determines this.

Example 15 If q = 40, all numbers in the outer code will be below 40, so we
need maximum 6 bits to represent each number. Hence we store b32/6c = 5
numbers in each block.

If the amount of storage space needed to save the outer code to disk is required,
use the following formula:

dn2/nrInBlocke ·M · 32 = Number of bits.

The first part, dn2/nrInBlocke, is the amount of blocks needed by the buffer
array to represent the outer code. M is the number of supported users, while
32 is the block length.

Example 16 Let t = 20, M = 2t, q = 2t and n2 = 1000. Then each 32-bit
block can store 5 numbers. The storage space needed is: d1000/5e · 220 · 32 =
6710886400 bits = 800 MB.

As we see from the example, the maximum number of bits we can store in
one block is 32, but often some bits will be used to store irrelevant bits. The
following example will outline why this is the case.

Example 17 Let t = 10, M = 2t, q = 2t and n2 = 885. Since q = 20 we need
5 bits to represent one number, hence each 32-bit block can store 6 numbers.
The program needs 592 kB to store this code on disk. 2 bits in each block will
not store relevant bits (6 · 5 = 30). If all bits were used, the outer code file size
would be 557 kB.

71

CHAPTER 8. THE PROGRAM

When the buffer array is written to disk, this will include the bits that are
irrelevant. As we have seen from the previous example, this is a waste of
storage space. But as the program is primarily designed with a priority on
efficiency, this code representation will be the best solution.

The values of the n2 parameters generated by the BS-CS and HGS formulas
are very different. From Table 8.1 we see that since n2, the length of the outer

Formula t n2 q Storage space

BS-CS 10 885 20 592 kB
HGS 10 2138 20 1.39 MB

BS-CS 20 2169 40 1.7 GB
HGS 20 4512 40 3.5 GB

BS-CS 30 3854 60 3 TB
HGS 30 7629 60 5.9 TB

Table 8.1: BS-CS and HGS with ε = 10−10 and M = 2t.

codewords, is longer for the HGS numbers, it will also require more storage
space. In fact it requires approximately twice as much storage space as the
BS-CS scheme.

8.3.2 Memory

This section will provide a memory usage overview. The outer code is as already
mentioned stored at disk, but all other information will be stored in memory.
The decrease in running time is one of the benefits from using the memory
instead of disk. But in fact this disk communication is only a small bottleneck
in the program. As Table 8.2 shows, it will only affect the overall running times
slightly if the program stores the outer code in memory instead of at disk. The
compatibility with large codes is more important than slightly faster running
times, hence the outer code is stored to disk.

Table 8.3 outlines the difference between the memory usage of the BS-CS
scheme and the HGS scheme. It is apparent that the HGS numbers give much
better memory usage. The reason for this is simple. The r parameter given
by the HGS formula is much smaller, hence the inner code will be shorter and
smaller arrays are needed. The aspect that could favor the BS-CS memory
usage is the short outer codewords, but since these are stored to disk the
memory usage is unaffected.

The numbers in Table 8.3 are achieved with the NOP variable set to 1.
This means that only one pirate collusion is used. If we set NOP = 1000, the
memory usage will grow for both cases, but the increase is most significant for
the HGS parameters. For the case t = 20 the BS-CS memory usage grows

72

8.3. COMPUTER USAGE

Formula OC storing t n2 r q Time used

BS-CS memory 10 885 39465 20 12 sec.
BS-CS disk 10 885 39465 20 11 sec.
HGS memory 10 2139 7716 20 5 sec.
HGS disk 10 2139 7716 20 5 sec.

BS-CS memory 20 2169 165197 40 18.07 min.
BS-CS disk 20 2169 165197 40 18.48 min.
HGS memory 20 4513 37261 40 -
HGS disk 20 4513 37261 40 File size exceeded

Table 8.2: Running times when the outer code is stored to disk and memory.
BS-CS and HGS formulas with ε = 10−10 and M = 2t. NOC = 1 and NPC =
1.

Formula t Memory usage

BS-CS 10 1.5 MB
HGS 10 0.7 MB

BS-CS 20 17.5 MB
HGS 20 4.5 MB

BS-CS 30 82 MB
HGS 30 22 MB

Table 8.3: Memory usage for the BS-CS and HGS-schemes with ε = 10−10,
M = 2t and NOP = 1.

to 25 MB, while the HGS memory usage grows to 21. The explanation: The
tracing algorithm is executed once (one run through the outer code book),
hence the program must collect the outer codewords for all collusions returned
by the inner decoding (Algorithm 1) in an array. In the case of 1000 pirate
collusions, this array will use more memory for the HGS formulas because the
outer codewords are longer here (one array has size: n2 multiplied with the
NOC variable). So a growing number of pirate collusions will favor the BS-CS
memory usage.

8.3.3 CPU

The program depends on the use of bitwise operators like AND, OR and XOR,
hence a fast CPU is very important for the simulation running times. Especially
the RNG, which is a significant part of a simulation-run, relies heavily on these
operators.

73

CHAPTER 8. THE PROGRAM

The program does not use parallel algorithms because the simulations will
not benefit from this. We can divide a simulation run between many processors
by simply running the program more than one time on the cluster, and then
add the number of errors achieved.

8.4 The header file

bonehShaw.h contains common macros, constants, error messages, exit codes,
configuration settings and all the function definitions. The struct codeParam,
which stores all the code parameters and properties is defined here.

74

Chapter 9

The modules

This chapter will give details on the program modules, hence it serves as a
technical documentation. Most of the modules and functions are designed with
reuse in mind, so they easily can be adapted to work with other programs. The
following section will outline how the modules interact.

9.1 Overview

Figure 9.1: Module interaction.

Figure 9.1 shows all the interaction between the modules in the program.
The main function is located in the module bsMain, and from this function the
first 4 function calls are made. The * indicates that the function can be called
several times (this is determined by the size of the NOC variable).

75

CHAPTER 9. THE MODULES

9.2 Program control

This module includes the main function, hence the program behavior will be
controlled from here.

Module: bsMain
File: bsMain.c
We initiate the RNG, and a timer which is used to calculate the running time
of the program. At the command-line the user specifies the program options.
This information will be registered in flags, as the following example outlines.

Example 18 If only outer code generation is needed, use the option -o. This
choice will be stored in the flag: flagOC.

The variable NOC (specified in bonehShaw.h) decides how many outer codes
that will be created (the new one overwrites the old).

9.3 Setting the parameters

This module contains functions that read command-line input and calculate
code properties. This information is saved in the struct codeParam defined in
the header file.

Module: setCodeParam
File: setCodeParam.c
The function getCodeParam() reads the code parameters from the command-
line. Some error-handling routines are implemented here. Wrong number of
arguments will generate an error message, and the function chkIfDigit() will
check if the parameters given really are digits. The collusion-size parameter t
is not forced input, but only outer code generation will work if it is skipped. It
is needed for creation/tracing of the hybrid fingerprint.

The function setProp() calculate and stores code properties. An example
of such a property is the information on how many blocks required by an array
to store the outer or inner codewords.

9.4 Handling the outer code

The outer code is one of the building blocks in the BS-CS fingerprinting scheme.
This module handles all operations on this code.

Module: outerCode
File: oc.c
The primary function in this module is genOuterCode(). This function gen-
erates and stores the outer code to a file. An array called outercode is used
to store the outer codewords for one user. When all numbers for one outer

76

9.5. GENERATE HYBRID FINGERPRINT

codeword are generated and stored in the array, it will be written to file. This
procedure is then repeated for all users. Some details on how an outer code-
word is stored will now be given: Every block in the array has room for more
than one number. How many is determined by the size of q. Usually the blocks
will not be filled. See section 8.3.1 for examples.

The function getOC() first calls the function getOCFromFile(), which given
a particular user number, returns this user’s outer codeword. Since the latter
function stores more than one number in one block, the getOC() function is
used to extract the numbers and then store them in an array with only one
number in each block (it is not strictly necessary to use this additional array,
but it will greatly reduce complexity at later stages).

9.5 Generate hybrid fingerprint

To generate a hybrid fingerprint the program must, among other things, find
the feasible set and generate the hybrid fingerprint. A lot of arrays are needed,
hence an array overview will be given later in this subsection. First the most
important functions will be mentioned.

Module: makeHybrid
File: makeHybrid.c
To create the hybrid fingerprint the function genHybridFP() is called. A finger-
print is a concatenation of several inner codewords. In the process of creating
the hybrid fingerprint the program will look at each inner codeword (block)
separately. First it finds the feasible set for the current inner codeword, then
a block of the hybrid fingerprint is created. After one of the n2 blocks of the
hybrid fingerprint is created, the program sends it to the function alg1(), which
is Algorithm 1 (the inner decoding) in the BS-CS scheme. All the n2 blocks will
be handled in the same manner. The variable NPC (specified in bonehShaw.h)
tells the program how many pirate collusions that will be created on each outer
code. So when all the hybrid fingerprint blocks are made, and the inner decod-
ing has been executed on each of them, the program jump directly to the next
collusion. After this is done for all collusions, the trace() function described in
subsection 9.6 is executed.

Creation of pirate collusions are handled by the function genCollusion(). It
uses the RNG to randomly choose a pirate collusion of size t. The program
checks that each user in an collusion is unique.

The function getPartOfCC() returns the inner codeword that corresponds
to a given number in the outer code. The inner codewords are generated based
on the outer code numbers. The next example shows how this work.

Example 19 If q = 4, r = 3 and the number in the outer codeword (OCN) is
2, then the inner codeword 000000111 will be generated. The length 9 is given
by the formula r(q− 1), while the number of zero’s is determined like this: The

77

CHAPTER 9. THE MODULES

OCN number is multiplied with r, hence we have 2 ·3 = 6. Therefore the 6 first
positions will be zero’s.

The findFeasible() function uses the current inner codewords for all pirates
in an collusion to find the feasible set.

The makeHybrid() function generates a given number of 64-bit blocks ran-
domly. This number of blocks equals the number of blocks in the inner code.
After the generation, a test ensures that the hybrid fingerprint block is valid.
We use the feasible set and one of the pirate codewords to check the bit positions
for correctness. The following example will outline how this work.

Example 20 We have a pirate collusion of size t = 2. Here pirate A has the
inner codeword 000111111, while pirate B has the codeword 000000000. Hence
the feasible set is 000111111 (pirates can detect the last 6 positions).

A hybrid fingerprint is generated randomly: 10101110. The program then
checks the validity of the fingerprint against the feasible set. We see that po-
sition 1 and 3 are not valid because both pirate codewords have the value 0 in
these positions. Hence these positions must be flipped according to one of the
pirate codewords. All other positions are valid, and therefore kept.

Array overview:

• everyPos: 2D array. After a block of the hybrid fingerprint is generated,
this block will be given as input to the inner decoding algorithm alg1().
The everyPos array stores the outer codeword numbers returned from
this algorithm. It is 2 dimensional because it stores the outer codewords
returned for all pirate collusions. This is needed for effective outer de-
coding.

• feasible: This array stores the current feasible set block after all the
pirates have compared their current inner codewords.

• hybridFP: This array stores the current hybrid fingerprint block gener-
ated.

• pirates: 2D array. This array contains all the pirates for all collusions.
This is needed in order to determine if the tracing process returns the
correct guilty users.

• piratesCol: 2D array. Here the current inner codeword for all pirates in
one collusion is stored. These inner codewords will later be compared to
create the current feasible set block.

• pirOC: This array stores all the outer codewords for one pirate collusion.
This is needed to determine which inner codewords to use when creating
the feasible set and the hybrid fingerprint.

78

9.6. TRACE HYBRID FINGERPRINT

9.6 Trace hybrid fingerprint

The tracing procedure can essentially be divided in two steps: The inner de-
coding and the outer decoding. This module will describe these tracing steps.

Module: traceHybrid
File: traceHybrid.c
The function alg1() is as already mentioned Algorithm 1 from the BS-CS
scheme. This function is called from the for loop in the function genHybridFP()
(module makeHybrid). The inner decoding starts each time a block of the hy-
brid fingerprint is created, and it returns the number from the outer code
alphabet which was most likely used to generate this current hybrid fingerprint
block.

The function weight() is used by alg1() to calculate the weight of particular
bit positions in a hybrid fingerprint block. The number of 1’s for a particular
area on the hybrid fingerprint are added together to form the weight.

After the outer codeword is returned from alg1() (based on all the hybrid
fingerprint parts) for all collusions, the trace() and closestNDec() functions
will compare these codes to the outer codewords in the code book. The user,
for every collusion, which has the outer codeword that matches the returned
pirate outer codeword in most positions (smallest Hamming distance), will be
returned. If the returned user does not exist in the current collusion, then the
program updates the error variable.

9.7 The Random Number Generator

The random number generator (RNG) is used by the program to generate the
outer codes, the pirate collusions and the hybrid fingerprints.

Module: Mersenne Twister RNG
File: mt19937ar.c
The program is not hard coded to work with only one particular RNG, so it
should be easy to change RNGs. Only the functions in the RNG handler must
be adjusted. In this case the excellent generator Mersenne Twister is chosen.
The generator is implemented in the file mt19937ar.c (this implementation is
the work of the Mersenne Twister creators).

9.8 The RNG handler

All program calls to the chosen RNG will go through this module.

Module: RNGhandler
File: rng.c
When the program requires random numbers it will always call the functions

79

CHAPTER 9. THE MODULES

in this file. Here it is specified which RNG the program uses. This will make
it very easy to change RNG.

9.9 Other functions

This module contains functions that have nothing in common, they are collected
here because no other logical placing was appropriate.

Module: otherFunc
File: otherFunc.c
The chkIfDigit() function will check if a given character is a digit. It is used by
the program to check if the parameters given at the command-line are digits.
The logB2() function calculates the base 2 logarithm for a given number. The
help() function prints information on where the user can acquire help.

9.10 Debugging

This module contains functions that are made for debugging purposes. When
debugging we must use small parameters as input, because large parameters
will be impossible to read due to screen limitations.

Module: printFunc
File: printFunc.c
The function printNonBinaryCode() reads all the outer codewords from the file
outercode, and prints them on the screen.

The function printBinaryCode() prints the inner codewords on the screen.
Also blocks of the feasible set or block of the hybrid fingerprint will be displayed
with this function.

9.11 More implementation details

This section will further explain the most important operations in the program.
Pseudo-code is used in order to describe the operations.

9.11.1 Generate and store the outer code

This subsection will outline how the outer code is generated and stored.

1. block length = the amount of numbers one outer codeword block can
store

2. for(i = 1 to the total number of users, M)
3. for(j = 1 to the number of blocks in the outer codeword array)
4. if last outer codeword block, set block length=length of last block
5. for(k = 1 to block length)

80

9.11. MORE IMPLEMENTATION DETAILS

6. generate and store outer codeword number at:
7. a) the rightmost positions of the block, if first number in block
8. b) the next free bit positions, if not first number
9. block length = the amount of numbers one outer codeword block can

store
10. write current outer codeword to file

An outer codeword for each user is now generated and stored at disk.

9.11.2 Generate hybrid fingerprint

Here we show how the hybrid fingerprint is created.

1. for(i = 1 to the number of pirate collusions, NPC)
2. generate and store collusion i

3. for(j = 1 to the number of pirates in collusion, t)
4. get the outer codeword for pirate j in collusion i

5. for(j = 1 to the length of the outer codeword, n2)
6. for (k = 1 to the number of pirates in the collusion, t)
7. get the inner codeword block j for pirate k

8. find the feasible set for inner codeword j

9. make the hybrid fingerprint block

The inner decoding (alg1()) is executed each time after step 9 (in the same for
loop) if tracing (-t) is given as an option.

81

Chapter 10

Using bsSim

This chapter provides an description on the use of the bsSim program. The
chapter is split into parts according to the task at hand. The last section will
provide an error handling overview.

All program input are given at the command-line. The syntax is:
[tor]$ bsSim -[OPTIONS] n2 M q r [Optional t]

10.1 Generate outer code

If the task is to create the outer code, and nothing else, we write an -o in the
[OPTIONS] field. In addition, we must provide the code parameters. The
size of the collusion t is not needed, hence we give 4 parameters as input.
If the t parameter is provided, the program simply ignores it. The output
Outercode generated and stored will be printed each time the program creates
a new outer code. How many times it appears are determined by the NOC
variable. The size of the other variable, NPC, is irrelevant here, because no
hybrid fingerprints are created. The outer code will be stored in the outercode
file. The total running time will differ from the OC running time if NOC > 1.

[tor]$ bsSim -o 160 1024 20 5
Code parameters: C1 = (n1, q) = (95, 20), C2 = (n2,M)q = (160, 1024)20,
r = 5, t = 0, n = 15200
Outercode generated and stored (Printed NOC times)

Generate OC running time = 0 seconds

Total running time = 0 seconds

10.2 Make hybrid fingerprint

To create a hybrid fingerprint in addition to the outer code, we use the two
options -o and -m. Since the program here generates a hybrid fingerprint, we

82

10.3. TRACE HYBRID FINGERPRINT

need to specify the size of the pirate collusion (the t parameter must be given
as input). If we only give the -m option as input, the outer code generation
will be skipped. This will only work if the user already has created the outer
code (with the same size). So even if NOC > 1, all the pirate collusions will
use the same outer code in the process of creating their hybrid fingerprints.

[tor]$ bsSim -om 160 1024 20 5 10
Code parameters: C1 = (n1, q) = (95, 20), C2 = (n2,M)q = (160, 1024)20,
r = 5, t = 10, n = 15200
Outercode generated and stored (Printed NOC times)

Generate OC running time = 0 seconds

Total running time = 0 seconds

10.3 Trace hybrid fingerprint

To trace the hybrid fingerprint created, use the options -o and -t. The option -t
includes the creation of the hybrid fingerprint (option -m), because no tracing is
possible if no hybrid fingerprint exists. If we only choose to give -t as input, the
generation of the outer code will be skipped. To achieve complete simulation
results, the options -ot must be provided. We see from the output that given
these options the program returns the running time and the number of tracing
errors made.

[tor]$ bsSim -ot 160 1024 20 5 10
Code parameters: C1 = (n1, q) = (95, 20), C2 = (n2,M)q = (160, 1024)20,
r = 5, t = 10, n = 15200
Outercode generated and stored (Printed NOC times)

Total error: 0
Generate OC running time = 0 seconds

Total running time = 0 seconds

10.4 Other functions

We can give two additional options on the command-line:

Debugging The -p option is a debugging function. It prints simulation in-
formation to the screen. If given together with the -o option, the program will
print all the outer codewords created. If given together with the -t option, it
will print the pirate collusion’s feasible set, hybrid fingerprint, and some trac-
ing information. This print function will be useless with large codes, because
the information printed on screen will be to extensive for the human mind to
grasp.

[tor]$ bsSim -op 10 10 10 5

83

CHAPTER 10. USING BSSIM

Code parameters: C1 = (n1, q) = (45, 10), C2 = (n2,M)q = (10, 10)10,
r = 5, t = 0, n = 450
Outercode generated and stored

Codeword 1 = 2188344570
Codeword 2 = 0230692898
Codeword 3 = 4115448737
Codeword 4 = 3512517805
Codeword 5 = 2498985607
Codeword 6 = 1382158442
Codeword 7 = 9468456449
Codeword 8 = 6300604921
Codeword 9 = 3255138292
Codeword 10 = 6163096997
Generate OC running time = 0 seconds

Total running time = 0 seconds

Help information The -h option is a help function. If this option is given,
all other options are ignored. It will print a help message, which tells the user
where additional help can be found.

[tor]$ bsSim -h

Read the manual for help

10.5 Error messages

This section will give a summary of the existing error messages. The first
three are related to wrong input, while the last two can have more than one
explanation and are therefore more difficult to explain.

No options and/or parameters given. This will give a simple message, telling
the user the correct syntax. Wrong number of parameters will also trig this
message.
[tor]$ bsSim

Correct syntax: progName [OPTIONS] n2 M q r [Optional t]

One or more of the code parameters provided is, or includes, non-digits. The
error message given will tell the user to provide only digits as code parameters.
[tor]$ bsSim -o 160 1024 20 5d
n2, M, q, r and t(optional) must be numbers.

Correct syntax: progName [OPTIONS] n2 M q r [Optional t]

The option -m or -t is provided, but no collusion-size parameter t is given. A
message telling the user to include the t parameter is printed. This message
will also be printed if t is greater than M or smaller than 2.

84

10.5. ERROR MESSAGES

[tor]$ bsSim -ot 160 1024 20 5
The number of colluding pirates(t) must be given as input (M > t > 1).
Correct syntax: progName [OPTIONS] n2 M q r [Optional t]

The program cannot open the file outercode for writing or reading.
Unable to open the file outercode.txt

The program can not allocate the necessary memory required.
Error on malloc

85

CHAPTER 10. USING BSSIM

86

Part IV

The Appendices

87

88

Appendix A

The source code

This appendix will list the program code. Each section corresponds to a module
in the program (the first section gives the header file).

A.1 The header file

1 /* bonehShaw.h */

2 /* 2005: Tor Røneid <torr@ii.uib.no> */

3

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <time.h>

7 #include <limits.h>

8 #include <math.h>

9 #include <fcntl.h>

10

11 /* Typedef */

12 typedef unsigned long word;

13 typedef unsigned long long dword;

14

15 typedef struct codeParam {

16 word n1;

17 word q;

18 word n2;

19 word M;

20 word t;

21 long r;

22 double ICepsilon;

23 double expr;

24 int nrOfBits;

25

26 int nrOfBlocksIC;

27 int lenLastBlockIC;

28 int nrOfBlocksOC;

29 int lenLastBlockOC;

30 int nrInBlockOC;

89

APPENDIX A. THE SOURCE CODE

31 int nrOfBytes;

32 }cParam;

33

34 /* Define constants */

35 #define BS_WORD 32

36 #define BS_DWORD 64

37 #define ULLONG_MAX 0xffffffffffffffffULL

38

39 /* Define macros */

40 #define CLE printf("Correct syntax: progName [OPTIONS] n2" \

41 " M q r [Optional t]\n"), exit(1)

42 #define EOM(code) ((code == NULL) ? printf("Error on malloc"), exit(1): NULL)

43 #define UOF printf("Unable to open the file %s",TXTFILE), exit(1)

44

45 /* Define config_options */

46 #define TXTFILE "outercode.txt"

47 /* The number of outer codes we want to create */

48 #define NOC 225

49 /* Nr of collusions we want to create on one outer code */

50 #define NPC 225

51

52 /* Functions */

53 cParam getCodeParam(int argc,char *argv[]);

54 int chkIfDigit(char argv[]);

55 cParam setProp(cParam p);

56 void genOuterCode(cParam param);

57 void printNonBinaryCode(cParam param);

58 int trace(long **everyPos, word **pirates, cParam p, int flagP);

59 void getPartOfCC(dword *innerCode, word *outerCode,

60 cParam p, word userNr, int OCpos);

61 void printBinaryCode(dword *concatCode, cParam p);

62 int genHybridFP(cParam p, int flagP, int flagT);

63 void makeHybrid(dword *hybridFP,dword **pirateCol,

64 dword *feasible, cParam p, int flagP);

65 void findFeasible(dword *feasible, dword **pirateCol, cParam p, int flagP);

66 long alg1(dword *hybridFPblock, cParam p, int flagP);

67 void closestNDec(long **position,int *guiltyUsers,cParam p,int flagP);

68 word weight(dword *hybridBlock, cParam p, int s);

69 void getOC(int userNr, word *numbers, cParam p);

70 void getOCFromFile(word *code,word userNr, cParam p);

71 void genCollusion(word *pirates, cParam p);

72 double logB2(double nr);

73 void helpInfo(void);

74 void seedRNG(void);

75 dword getRandomDWord(void);

76 word getRandomWord(word q);

77 void init_genrand(unsigned long s);

78 unsigned long genrand_int32(void);

79 double genrand_real2(void);

80

81 /* End of bonehShaw.h */

90

A.2. THE MAIN PROGRAM

A.2 The main program

1 /* bsMain.c */

2 /* 2005: Tor Røneid <torr@ii.uib.no> */

3

4 #include "bonehShaw.h"

5

6 int main(int argc, char *argv[])

7 {

8 int i,c,total,error, flagOC,flagP,flagM,flagT;

9 cParam p; /* Code parameters */

10 time_t start,end, startOC, endOC;

11

12 (void) time(&start);

13 total=error=flagOC=flagP=flagM=flagT=0;

14

15 while(--argc>0 && (*++argv)[0] == ’-’)

16 while (c = *++argv[0])

17 switch(c) {

18 case ’o’: /* Generate outer code */

19 flagOC=1; break;

20 case ’m’: /* Generate hybrid fingerprint */

21 flagM=1; break;

22 case ’t’: /* Trace hybrid fingerprint */

23 flagM=1; flagT=1; break;

24 case ’p’: /* Print */

25 flagP=1; break;

26 case ’h’: /* Help info */

27 helpInfo(); return 0;

28 }

29

30 /* Get all code parameters. Store in struct */

31 p = getCodeParam(argc, argv);

32

33 printf("Code parameters: C1=(n1,q)=(%u,%u), C2=(n2,M)_q=(%u,%u)_%u."\

34 "\n\t\t r=%d, t=%u, n=%u\n", p.n1, p.q, p.n2, p.M, p.q, p.r,p.t,p.n1*p.n2);

35

36 /* Set all code properties. Store in struct */

37 p = setProp(p);

38

39 seedRNG();

40

41 /* Run the program a number of times... */

42 for(i=0;i<NOC;i++) {

43 if(flagOC==1) { /* Generate outer code */

44 if(i==0) (void) time(&startOC);

45 genOuterCode(p);

46 if(i==0) (void) time(&endOC);

47

48 if(flagP==1) /* Print outer code */

49 printNonBinaryCode(p);

50 }

51

91

APPENDIX A. THE SOURCE CODE

52 if(flagM==1) { /* Generate hybrid fingerprint */

53 if(p.t < p.M && p.t > 1) /* Check if t is given as argument */

54 error = genHybridFP(p, flagP, flagT);

55 else{

56 printf("The number of colluding pirates(t) must be given"\

57 " as input. (M > t > 1)\n");

58 CLE;

59 }

60 }

61

62 total=total+error;

63 }

64

65 if(flagT==1 && p.t>1)

66 printf("Total error: %d\n", total);

67

68 if(flagOC==1)

69 printf("Generate OC running time = %d seconds\n",(int)endOC-(int)startOC);

70 (void) time(&end);

71 printf("Total running time = %d seconds\n",(int)end-(int)start);

72

73 return 0;

74 }

75

76 /* End of bsMain.c */

A.3 Set parameters

1 /* setCodeParam.c */

2 /* 2005: Tor Røneid <torr@ii.uib.no> */

3

4 #include "bonehShaw.h"

5

6 /* Get code parameters from command-line */

7 cParam getCodeParam(int argc,char *argv[])

8 {

9 cParam p;

10

11 if(argc < 4 || argc > 5)

12 CLE; /* Wrong nr of arguments */

13

14 p.n2 = chkIfDigit(argv[0]); /* Outer code - length */

15 p.M = chkIfDigit(argv[1]); /* Outer code - #codewords */

16 p.q = chkIfDigit(argv[2]); /* Outer code - alphabet

17 Inner code - #codewords */

18 p.r = chkIfDigit(argv[3]); /* Inner code - replication factor */

19 p.n1 = p.r * (p.q-1); /* Inner code - length */

20

21 /* Check for collusion-size parameter */

22 p.t = (argc == 5) ? chkIfDigit(argv[4]) : 0;

23

92

A.4. GENERATE/READ OUTER CODE

24 /* ICepsilon and expr are used in the tracing algorithm alg1() */

25 //p.ICepsilon = pow(2,logB2(2*p.q)-(p.r/(2 * pow(p.q,2)))); /* T.V.1 */

26 p.ICepsilon = ((2 * p.q) * pow(2,-(p.r/(2 * pow(p.q,2))))); /* T.V.1 */

27 p.expr = (logB2((2*p.q)/p.ICepsilon)); /* Constant */

28

29 return p;

30 }

31

32 /* Calculate code properties */

33 cParam setProp(cParam p)

34 {

35 int i;

36

37 /* Find nr of bits we need for one nr in the outer code */

38 for(i=0;i<BS_WORD;i++)

39 if ((p.q & (word)1<<i) > 0)

40 p.nrOfBits = i+1;

41

42 /* # numbers we can store in each block(in each unsigned long)

43 of the Outer code */

44 p.nrInBlockOC = BS_WORD/p.nrOfBits;

45

46 /* Set number of blocks in Outer code */

47 p.nrOfBlocksOC = (p.n2 % p.nrInBlockOC) == 0 ?

48 p.n2/(p.nrInBlockOC) : (p.n2/(p.nrInBlockOC))+1;

49

50 /* Set size of last block in Outer Code */

51 p.lenLastBlockOC = p.n2-((p.nrOfBlocksOC-1)*p.nrInBlockOC);

52

53 /* Set number of blocks in Inner code */

54 p.nrOfBlocksIC = (p.n1 % BS_DWORD) == 0 ?

55 p.n1/BS_DWORD : (p.n1/BS_DWORD) + 1;

56

57 /* Set size of last block in Inner Code */

58 p.lenLastBlockIC = p.n1-(BS_DWORD*(p.nrOfBlocksIC-1));

59

60 return p;

61 }

62

63 /* End of setCodeParam.c */

A.4 Generate/read outer code

1 /* oc.c */

2 /* 2005: Tor Røneid <torr@ii.uib.no> */

3

4 #include "bonehShaw.h"

5

6 /* Generate and store the outer code. */

7 void genOuterCode(cParam p)

8 {

93

APPENDIX A. THE SOURCE CODE

9 int i,j,k, blockLen;

10 FILE *fp;

11 word *outerCode;

12

13 EOM((outerCode = malloc(p.nrOfBlocksOC * sizeof(word))));

14

15 if ((fp = fopen(TXTFILE, "w")) == NULL)

16 UOF; /* Unable to open the file */

17

18 blockLen = p.nrInBlockOC;

19

20 for(i=0;i<p.M;i++) { /* For all users */

21 for(j=0;j<p.nrOfBlocksOC;j++) { /* For the nr of blocks we need */

22 if (j == p.nrOfBlocksOC - 1) /* If last block */

23 blockLen = p.lenLastBlockOC;

24

25 for(k=0;k<blockLen;k++) { /* For the number of numbers in block */

26 if(k==0) /* First number in this block */

27 outerCode[j] = getRandomWord((word)p.q) << (BS_WORD-p.nrOfBits);

28 else

29 outerCode[j] ^=

30 (getRandomWord((word)p.q) << (BS_WORD-((k+1)*p.nrOfBits)));

31 }

32 }

33 blockLen = p.nrInBlockOC;

34 fwrite(outerCode, p.nrOfBlocksOC, sizeof(word),fp);

35

36 if(i==0)

37 if((fp = freopen(TXTFILE,"a",fp)) == NULL)

38 UOF; /* Unable to reopen the file */

39 }

40 printf("Outercode generated and stored\n");

41

42 fclose(fp);

43 free(outerCode);

44 }

45

46 /* Extract the numbers from a particular user‘s outer code */

47 void getOC(int userNr, word *numbers, cParam p)

48 {

49 int i,j,k,t,lenBlock;

50 word mask, *outerCode;

51

52 lenBlock = p.nrInBlockOC;

53 t = 0;

54

55 EOM((outerCode = malloc(p.nrOfBlocksOC * sizeof(word))));

56

57 /* ’mask’ is used to mask out the current bits. First we

58 set ’mask’ such that we can get the first number */

59 mask = ULONG_MAX << (BS_WORD-p.nrOfBits);

60

61 getOCFromFile(outerCode, userNr, p);

62

94

A.5. MAKE HYBRID FINGERPRINT

63 for(j=0;j<p.nrOfBlocksOC;j++) { /* For all blocks */

64 if (j==p.nrOfBlocksOC-1)

65 lenBlock = p.lenLastBlockOC;

66

67 /* For all numbers in the current block */

68 for(k=0;k<lenBlock;k++,t++)

69 numbers[t] =(outerCode[j] &

70 (mask >>(p.nrOfBits*k))) >> (BS_WORD-(p.nrOfBits*(k+1)));

71 }

72

73 free(outerCode);

74 }

75

76 /* Get the outer codeword for a particular user */

77 void getOCFromFile(word *code, word userNr, cParam p)

78 {

79 FILE *fp;

80 fp = fopen(TXTFILE,"r");

81

82 fseek(fp, userNr*p.nrOfBlocksOC*sizeof(word),SEEK_SET);

83 fread(code, p.nrOfBlocksOC, sizeof(word),fp);

84

85 fclose(fp);

86 }

87

88 /* End of oc.c */

A.5 Make hybrid fingerprint

1 /* makeHybrid.c */

2 /* 2005: Tor Røneid <torr@ii.uib.no> */

3

4 #include "bonehShaw.h"

5

6 /* Make hybrid fingerprint */

7 int genHybridFP(cParam p, int flagP, int flagT)

8 {

9 int i,j,k,l,m,error;

10 dword *feasible, *hybridFP, **pirateCol, *arrayptr;

11 word **pirates, *arrayptr2;

12 long **everyPos,*arrayptr1;

13 word **pirOC, *arrayptr3;

14

15 error=0;

16

17 EOM((feasible = malloc(p.nrOfBlocksIC * sizeof(dword))));

18 EOM((hybridFP = malloc(p.nrOfBlocksIC * sizeof(dword))));

19

20 /* Make pirate codebook -> Allocate memory for the array */

21 EOM((arrayptr = malloc(p.t * p.nrOfBlocksIC * sizeof(dword))));

22 /* Allocate room for the pointers to the rows */

95

APPENDIX A. THE SOURCE CODE

23 EOM((pirateCol = malloc(p.t * sizeof(dword *))));

24 /* Make array to store pirate outer codes */

25 EOM((arrayptr3 = malloc(p.t * p.n2 * sizeof(word))));

26 EOM((pirOC = malloc(p.t * sizeof(word *))));

27 /* and now we ’point’ the pointers */

28 for (i=0;i<p.t;i++) {

29 pirateCol[i] = arrayptr + (i * p.nrOfBlocksIC);

30 pirOC[i] = arrayptr3 + (i * p.n2);

31 }

32

33 /* Store the outer code numbers returned from alg1...for all the pirColls */

34 EOM((arrayptr1 = malloc(NPC * p.n2 * sizeof(long))));

35 EOM((everyPos = malloc(NPC * sizeof(long))));

36 /* Make pirate array */

37 EOM((arrayptr2 = malloc(NPC * p.t * sizeof(word))));

38 EOM((pirates = malloc(NPC * sizeof(word))));

39 for (i=0;i<NPC;i++) {

40 pirates[i] = arrayptr2 + (i * (p.t));

41 everyPos[i] = arrayptr1 + (i * (p.n2));

42 }

43

44 /* Create a collusion -> make part of hybridfp -> trace part */

45 for(i=0;i<NPC;i++) {

46 genCollusion(pirates[i],p);

47

48 for(j=0;j<p.t;j++) /* Get pirate outer code */

49 getOC(pirates[i][j],pirOC[j],p);

50

51 /* For all digits in the outer code */

52 for(j=0;j<p.n2;j++) {

53 /* Get one of the inner codeblocks for all pirates */

54 for(k=0;k<p.t;k++) {

55 getPartOfCC(pirateCol[k], pirOC[k],p, k, j);

56

57 if(flagP==1) {

58 printf("\nUser %d IC corresponds to nr in position %d in OC "

59 ,pirates[i][k], j);

60 printBinaryCode(pirateCol[k], p);

61 }

62 }

63

64 findFeasible(feasible, pirateCol, p, flagP);

65 makeHybrid(hybridFP,pirateCol,feasible,p, flagP);

66

67 if(flagT==1) /* If tracing is chosen -> inner decoding */

68 /* Find and return the outer code nr from Algorithm1.*/

69 everyPos[i][j] = alg1(hybridFP,p, flagP);

70 }

71 }

72

73 if(flagT==1)) /* If tracing is chosen -> outer decoding */

74 error = trace(everyPos, pirates, p, flagP);

75

76 free(everyPos);

96

A.5. MAKE HYBRID FINGERPRINT

77 free(arrayptr);

78 free(arrayptr1);

79 free(pirateCol);

80 free(feasible);

81 free(hybridFP);

82 free(pirates);

83

84 return error;

85 }

86

87 /* Generate a random pirate collusion of size t */

88 void genCollusion(word *pirates, cParam p)

89 {

90 int i,j;

91 word randnum;

92

93 for(i=0;i<p.t;i++) {

94 pirates[i] = getRandomWord(p.M); /* Select pirate in the range: [0..M-1] */

95 /* Test to ensure that all pirates in the collusion are unique */

96 for(j=0;j<i;j++)

97 if(pirates[j] == pirates[i])

98 i=j=i-1;

99 }

100 }

101

102 /* Returns one of the inner codewords that

103 make up the concatenated code for a user */

104 void getPartOfCC(dword *innerCode, word *outerCode,

105 cParam p, word userNr, int OCpos)

106 {

107 int i, nrOfNull,changeBlocks, lastBlock;

108

109 /* Set innerCode according to the number in OC */

110 nrOfNull = p.r * outerCode[OCpos];

111

112 /* How many blocks must be changed */

113 changeBlocks = (nrOfNull % BS_DWORD) == 0 ?

114 nrOfNull/BS_DWORD : (nrOfNull/BS_DWORD) + 1;

115

116 for(i=changeBlocks;i<p.nrOfBlocksIC;i++)

117 innerCode[i] = ULLONG_MAX;

118

119 lastBlock = nrOfNull - (BS_DWORD * (changeBlocks -1));

120

121 for(i=0;i<changeBlocks;i++) {

122 if (i==changeBlocks-1)

123 innerCode[i] = ULLONG_MAX^(ULLONG_MAX<<(BS_DWORD-lastBlock));

124 else

125 innerCode[i] = (dword)0;

126 }

127 }

128

129 /* Find feasible set */

130 void findFeasible(dword *feasible, dword **pirateCol, cParam p, int flagP)

97

APPENDIX A. THE SOURCE CODE

131 {

132 int i, j, k;

133

134 if(flagP==1)printf("\nFinding feasible set for this inner code...");

135 for(i=0;i<p.t;i++) /* for every codeword...(part of concat code)*/

136 /* and for every part of that inner codeword */

137 for(j=0;j<p.nrOfBlocksIC;j++)

138 for(k=i+1;k<p.t;k++) { /*...compare against the rest */

139 if (k == i+1 && i == 0) /* No value in feasible[j] */

140 feasible[j] = pirateCol[i][j] ^ pirateCol[k][j];

141 else

142 feasible[j] |= pirateCol[i][j] ^ pirateCol[k][j];

143 }

144

145 if(flagP==1) {

146 printf("Feasible set found!\n");

147 printf("Feasible: ");

148 printBinaryCode(feasible, p);

149 printf("\nCreating part of hybrid fingerprint...");

150 }

151 }

152

153 /* Make part of hybrid fingerprint */

154 void makeHybrid(dword *hybridFP,dword **pirateCol,

155 dword *feasible, cParam p, int flagP)

156 {

157 int i;

158

159 for(i=0;i<p.nrOfBlocksIC;i++) { /* For all blocks */

160 /* Generate random block(Part of the hybrid fingerprint) */

161 hybridFP[i] = getRandomDWord();

162

163 /* Check if hybrid fingerprint is valid -> If not, correct it */

164 hybridFP[i] =

165 ((pirateCol[0][i] ^ hybridFP[i]) & (~feasible[i])) ^ hybridFP[i];

166 }

167

168 if(flagP==1) {

169 printf("Part of hybrid fingerprint created!\n");

170 printf("HybridFP: ");

171 printBinaryCode(hybridFP, p);

172 }

173 }

174

175 /* End of makeHybrid.c */

A.6 Trace hybrid fingerprint

1 /* traceHybrid.c */

2 /* 2005: Tor Røneid <torr@ii.uib.no> */

3

98

A.6. TRACE HYBRID FINGERPRINT

4 #include "bonehShaw.h"

5

6 /* Find ’guilty’ users, and check if they really are guilty */

7 int trace(long **everyPos, word **pirates, cParam p, int flagP)

8 {

9 int i,j, error, pirFound, *guiltyUsers;

10

11 error=pirFound=0;

12 EOM((guiltyUsers = malloc(NPC * sizeof(int))));

13

14 /* Find guilty users for all collusions by using CND */

15 closestNDec(everyPos,guiltyUsers,p, flagP);

16

17 /* Check if the ’guilty’ users returned really are guilty */

18 for(i=0;i<NPC;i++) {

19 for(j=0;j<p.t;j++)

20 if (guiltyUsers[i] == pirates[i][j])

21 pirFound = 1;

22

23 if(pirFound==0){

24 error++;

25 pirFound=0;

26 }

27

28 free(guiltyUsers);

29 return error;

30 }

31

32 /* This is the decoding algorithm for the inner code in the BS-CS scheme.

33 We apply alg1 to each of the n_2 components of the HybridFP */

34 long alg1(dword *hybridFPblock, cParam p, int flagP)

35 {

36 int s,w,k,flag;

37 long pos;

38

39 if(flagP==1) printf("ICepsilon:%0.15f\n",p.ICepsilon);

40 flag = 1;

41

42 /* Check condition 1 of alg 1. Check d first positions */

43 w = weight(hybridFPblock, p, 1);

44 if(flagP==1) printf("first cond. weight = %u\n", w);

45 if (w > 0)

46 pos = 0;

47 else {

48 /* Check condition 2 of alg 1. Check d last positions */

49 w = weight(hybridFPblock, p, p.q-1);

50 if(flagP==1) printf("second cond. weight = %u\n", w);

51 if (w < p.r)

52 pos = p.q-1;

53 else {

54 /* Check condition 3 of alg 1. */

55 for(s=2; s<p.q;s++) {

56 k = weight(hybridFPblock, p, s); //B_s

57 w = weight(hybridFPblock, p, s-1); //B_(s-1)

99

APPENDIX A. THE SOURCE CODE

58 k = k + w; //B_s U B_(s-1)

59

60 if(flagP==1) printf("third cond. weigth. k = %u\tw = %d\n", k, w);

61 if (w < (double)k/2 - sqrt(((double)k/2 * p.expr))) {

62 pos = s-1;

63 flag = 0;

64 s = p.q;

65 }

66 }

67 }

68 }

69 return pos;

70 }

71

72 /* Calculate the weight of a particular pattern(r length) in hybridFP */

73 word weight(dword *hybridBlock, cParam p, int s)

74 {

75 int i,r, pos, startBlock, nrOfNrBlock, check, length, count;

76 word w;

77 dword mask;

78

79 w = 0;

80 count = mask = 1;

81 r = p.r;

82 pos = p.r * s;

83

84 while(r>0) {

85 startBlock = (pos % BS_DWORD) == 0 ?

86 (pos / BS_DWORD) - 1 : pos / BS_DWORD;

87

88 nrOfNrBlock = pos - (BS_DWORD * startBlock);

89

90 /* Set number of positions to check */

91 check = (r >= nrOfNrBlock) ? nrOfNrBlock : r;

92

93 /* If count equals 2, then we must read block from

94 rightmost position. If count equals 1

95 (first block we look at), then we must set the

96 correct position to read from */

97 if(count == 1) {

98 count++;

99 length=(r<nrOfNrBlock)?BS_DWORD - nrOfNrBlock:BS_DWORD - check;

100 }

101 else

102 length = 0;

103

104 for(i=0;i<check;i++)

105 if ((hybridBlock[startBlock] & (mask << length + i)) != 0)

106 w++;

107

108 pos = pos - check;

109 r = r - check;

110 }

111

100

A.6. TRACE HYBRID FINGERPRINT

112 return w;

113 }

114

115 /* Find ’guilty’ users for all collusions, by using closest neighbour decoding */

116 void closestNDec(long **everyPos, int *guiltyUsers, cParam p, int flagP)

117 {

118 int i,j,k,counter;

119 int *prev;

120 word *outercode;

121

122 EOM((outercode = malloc(p.n2 * sizeof(word))));

123 EOM((prev = malloc(NPC * sizeof(int))));

124

125 if(flagP==1) {

126 printf("\n\nOuter codeword found: ");

127 for(i=0;i<NPC;i++){

128 guiltyUsers[i] = -1;

129 prev[i] = 0;

130

131 for(j=0;j<p.n2;j++)

132 printf("%d", everyPos[i][j]);

133 }

134 printf("\n\nCompare it with user codewords...\n");

135 }

136 else

137 for(i=0;i<NPC;i++){

138 guiltyUsers[i] = -1;

139 prev[i] = 0;

140 }

141

142 counter = 0;

143

144 for(i=0;i<p.M;i++) { /* For all users */

145 /* Get digits from the outerCode (For the current user) */

146 getOC(i, outercode, p);

147

148 /* Check how many positions that match */

149 for(j=0;j<NPC;j++) { /* For all collusions */

150 for(k=0; k<p.n2; k++) /* For all positions in outer code */

151 if (everyPos[j][k] == outercode[k])

152 counter++;

153

154 /* If this user codeword has more positions that match, store this user */

155 if (counter > prev[j]) {

156 guiltyUsers[j] = i;

157 prev[j] = counter;

158 }

159 counter = 0;

160 }

161 }

162

163 free(outercode);

164 free(prev);

165 }

101

APPENDIX A. THE SOURCE CODE

166

167 /* End of traceHybrid.c */

A.7 The RNG handler

1 /* rng.c */

2 /* 2005: Tor Røneid <torr@ii.uib.no> */

3

4 #include "bonehShaw.h"

5

6 void seedRNG(void)

7 {

8 init_genrand((unsigned)time(NULL));

9 }

10

11 /* Generates a 32 bit number in the range [0..q-1] */

12 word getRandomWord(word q)

13 {

14 return (genrand_real2() * q);

15 }

16

17 /* Generates a random 64 bit number */

18 dword getRandomDWord(void)

19 {

20 dword x;

21

22 /* Generate two 32 bit numbers. Concatenate to one 64 bit */

23 x = ((dword)genrand_int32() << 32) + (dword)genrand_int32();

24 return x;

25 }

26

27 /* End of rng.c */

A.8 Mersenne Twister RNG

1 /* mt19937.c */

2 /*

3 A C-program for MT19937, with initialization improved 2002/1/26.

4 Coded by Takuji Nishimura and Makoto Matsumoto.

5

6 Before using, initialize the state by using init_genrand(seed)

7 or init_by_array(init_key, key_length).

8

9 Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,

10 All rights reserved.

11

12 Redistribution and use in source and binary forms, with or without

13 modification, are permitted provided that the following conditions

14 are met:

15

102

A.8. MERSENNE TWISTER RNG

16 1. Redistributions of source code must retain the above copyright

17 notice, this list of conditions and the following disclaimer.

18

19 2. Redistributions in binary form must reproduce the above copyright

20 notice, this list of conditions and the following disclaimer in the

21 documentation and/or other materials provided with the distribution.

22

23 3. The names of its contributors may not be used to endorse or promote

24 products derived from this software without specific prior written

25 permission.

26

27 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

28 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

29 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

30 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

31 CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

32 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

33 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

34 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

35 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

36 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

37 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

38

39

40 Any feedback is very welcome.

41 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

42 email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

43 */

44

45 #include <stdio.h>

46

47 /* Period parameters */

48 #define N 624

49 #define M 397

50 #define MATRIX_A 0x9908b0dfUL /* constant vector a */

51 #define UPPER_MASK 0x80000000UL /* most significant w-r bits */

52 #define LOWER_MASK 0x7fffffffUL /* least significant r bits */

53

54 static unsigned long mt[N]; /* the array for the state vector */

55 static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */

56

57 /* initializes mt[N] with a seed */

58 void init_genrand(unsigned long s)

59 {

60 mt[0]= s & 0xffffffffUL;

61 for (mti=1; mti<N; mti++) {

62 mt[mti] =

63 (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);

64 /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */

65 /* In the previous versions, MSBs of the seed affect */

66 /* only MSBs of the array mt[]. */

67 /* 2002/01/09 modified by Makoto Matsumoto */

68 mt[mti] &= 0xffffffffUL;

69 /* for >32 bit machines */

103

APPENDIX A. THE SOURCE CODE

70 }

71 }

72

73 /* generates a random number on [0,0xffffffff]-interval */

74 unsigned long genrand_int32(void)

75 {

76 unsigned long y;

77 static unsigned long mag01[2]={0x0UL, MATRIX_A};

78 /* mag01[x] = x * MATRIX_A for x=0,1 */

79

80 if (mti >= N) { /* generate N words at one time */

81 int kk;

82

83 if (mti == N+1) /* if init_genrand() has not been called, */

84 init_genrand(5489UL); /* a default initial seed is used */

85

86 for (kk=0;kk<N-M;kk++) {

87 y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);

88 mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];

89 }

90 for (;kk<N-1;kk++) {

91 y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);

92 mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL];

93 }

94 y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);

95 mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];

96

97 mti = 0;

98 }

99

100 y = mt[mti++];

101

102 /* Tempering */

103 y ^= (y >> 11);

104 y ^= (y << 7) & 0x9d2c5680UL;

105 y ^= (y << 15) & 0xefc60000UL;

106 y ^= (y >> 18);

107

108 return y;

109 }

110

111 /* These real versions are due to Isaku Wada, 2002/01/09 added */

112 /* generates a random number on [0,0x7fffffff]-interval */

113 long genrand_int31(void)

114 {

115 return (long)(genrand_int32()>>1);

116 }

117

118 /* generates a random number on [0,1]-real-interval */

119 double genrand_real1(void)

120 {

121 return genrand_int32()*(1.0/4294967295.0);

122 /* divided by 2^32-1 */

123 }

104

A.9. DEBUGGING FUNCTIONS

124

125 /* generates a random number on [0,1)-real-interval */

126 double genrand_real2(void)

127 {

128 return genrand_int32()*(1.0/4294967296.0);

129 /* divided by 2^32 */

130 }

131

132 /* generates a random number on (0,1)-real-interval */

133 double genrand_real3(void)

134 {

135 return (((double)genrand_int32()) + 0.5)*(1.0/4294967296.0);

136 /* divided by 2^32 */

137 }

138

139 /* generates a random number on [0,1) with 53-bit resolution*/

140 double genrand_res53(void)

141 {

142 unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6;

143 return(a*67108864.0+b)*(1.0/9007199254740992.0);

144 }

145

146 /* End of mt19937.c */

A.9 Debugging functions

1 /* printFunc.c */

2 /* 2005: Tor Røneid <torr@ii.uib.no> */

3

4 #include "bonehShaw.h"

5

6 /* Print Outer code (Non-binary) */

7 void printNonBinaryCode(cParam p)

8 {

9 int i,j,k, blockLen;

10 word mask, *code;

11 FILE *fp;

12

13 if ((fp = fopen(TXTFILE,"r")) == NULL)

14 UOF; /* Unable to open the file */

15

16 EOM((code = malloc(p.nrOfBlocksOC * sizeof(word))));

17

18 blockLen = p.nrInBlockOC;

19

20 /* ’mask’ is used to mask out the current bits. First we

21 set ’mask’ such that we get the first number */

22 mask = ULONG_MAX << (BS_WORD-p.nrOfBits);

23

24 for(i=0;i<p.M;i++) { /* For all users */

25 printf("Codeword %i = ",i+1);

105

APPENDIX A. THE SOURCE CODE

26 fread(code, p.nrOfBlocksOC, sizeof(word),fp);

27

28 for(j=0;j<p.nrOfBlocksOC;j++) { /* For all blocks */

29 if (j==p.nrOfBlocksOC-1)

30 blockLen = p.lenLastBlockOC;

31

32 for(k=0;k<blockLen;k++) /* For all numbers in the current block */

33 printf("%u",(code[j] &

34 (mask >>(p.nrOfBits*k))) >> (BS_WORD-(p.nrOfBits*(k+1))));

35 }

36 printf("\n");

37 blockLen = p.nrInBlockOC;

38 }

39

40 fclose(fp);

41 free(code);

42 }

43

44 /* Print binary code */

45 void printBinaryCode(dword *innerCode, cParam p)

46 {

47 int i,k,j,t,bits, len, count;

48 char *str;

49

50 EOM((str = malloc(p.n1)));

51

52 k=0;

53 len = BS_DWORD;

54

55 for(i=0;i<p.nrOfBlocksIC;i++) {

56 if(i==p.nrOfBlocksIC-1)

57 len=p.lenLastBlockIC;

58

59 for(j=0;j<len; j++,k++)

60 str[k] = innerCode[i]&((dword)1<<(BS_DWORD-1-j))?’1’:’0’;

61 }

62

63 str[k] = ’\0’;

64

65 printf("%s - Length %i\n", str, strlen(str));

66

67 free(str);

68 }

69

70 /* End of printFunc.c */

A.10 Other functions

1 /* otherFunc.c */

2 /* 2005: Tor Røneid <torr@ii.uib.no> */

3

4 #include "bonehShaw.h"

106

A.10. OTHER FUNCTIONS

5

6 /* Check command-line input. Must be a digit */

7 int chkIfDigit(char argv[])

8 {

9 int i;

10

11 for(i=0;i<strlen(argv);i++)

12 if(!isdigit(argv[i])) {

13 printf("n2, M, q, r and t(optional) must be numbers.\n");

14 CLE;

15 }

16

17 return atoi(argv);

18 }

19

20 /* Calculate base 2 logarithm */

21 double logB2(double nr)

22 {

23 return log10(nr)/log10(2);

24 }

25

26 void helpInfo(void)

27 {

28 printf("Read the manual for help\n");

29 }

30

31 /* End of otherFunc.c */

107

APPENDIX A. THE SOURCE CODE

108

Bibliography

[AP98] R.J. Anderson and F.A.P. Petitcolas. On the limits of steganog-
raphy. IEEE Journal on Selected Areas in Communications, Spe-
cial Issue on Copyright and Privacy Protection, 16(4):474–481, may
1998.

[BBK03] A. Barg, G.R. Blakly, and G.A. Kabatiansky. Digital fingerprinting
codes: Problem statements, constructions, identifications of traitors.
IEEE Trans. Inform. Theory, 49(4):852–865, apr 2003.

[BMP85] G.R. Blakley, C. Meadows, and G.B. Purdy. Fingerprinting long for-
giving messages. Proceedings of Crypto ’85, Springer-Verlag, pages
180–189, 1985.

[BS95] D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital
data. Advances in Cryptology: Proceedings of Crypto ’95, Springer-
Verlag, pages 452–465, 1995.

[BS98] D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital
data. IEEE Trans. Inform. Theory, 44(5):1897–1905, sep 1998.

[CFN94] B. Chor, A. Fiat, and M. Naor. Tracing traitors. In Advances in
Cryptology - CRYPTO ‘94, 839 of Springer Lecture Notes in Com-
puter Science:257–270, 1994. Springer-Verlag.

[Che96] Y. M. Chee. Turàn-type problems in group testing, coding theory
and cryptography. PhD thesis, University of Waterloo, Canada,
1996.

[HJDF00] J. Herrera-Joancomarti and J. Domingo-Ferrer. Short collusion-
secure fingerprints based on dual binary hamming codes. Electronic
Letters, 36:1697–1699, sep 2000.

[HK99] F. Hartung and M. Kutter. Multimedia watermarking techniques.
Proceedings of the IEEE, 87(7):1079–1107, jul 1999.

[LBH03] T.V. Le, M. Burmester, and J. Hu. Short c-secure fingerprinting
codes. In Proceedings of the 6th Information Security Conference,
oct 2003.

109

BIBLIOGRAPHY

[LL00a] J. Löfvenberg and T. Lindkvist. A general description of pirate
strategies in a binary fingerprinting system. Report LiTH-ISY-R-
2259, 2000.

[LL00b] T. Lindkvist and J. Löfvenberg. Some simple pirate strategies. Re-
port LiTH-ISY-R-2258, 2000.

[MN98] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator. jan 1998.

[MS77] F.J. MacWilliams and N.J.A. Sloane. The theory of error-correcting
codes. 1977.

[Mur04] H. Muratani. Optimization and evaluation of randomized c-secure
crt code defined on polynomial ring. Information Hiding 2004,
3200:282–292, 2004.

[PS96] B. Pfitzmann and M. Schunter. Asymmetric fingerprinting. Ad-
vances in Cryptology - EUROCRYPT ’96, Springer-Verlag, pages
85–95, 1996.

[PS99] B. Pfitzmann and A.R. Sadeghi. Coin-based anonymous fingerprint-
ing. Advances in Cryptology - EUROCRYPT ’99, Springer-Verlag,
pages 150–164, 1999.

[PW97] B. Pfitzmann and M. Waidner. Anonymous fingerprinting. Advances
in Cryptology - EUROCRYPT ’97, Springer-Verlag, pages 88–102,
1997.

[Sag94] Y. L. Sagalovich. Separating systems. Problems of Information
Transmission, 30(2):105–123, 1994.

[Sch03a] H.G. Schaathun. The boneh-shaw fingerprinting scheme is better
than we thought. Technical Report 256, Department of Informatics,
University of Bergen, nov 2003.

[Sch03b] H.G. Schaathun. Fighting two pirates. In Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, volume 2643 of Springer
Lecture Notes in Computer Science:71–79, may 2003.

[Sch04a] H.G. Schaathun. Binary collusion-secure codes: Comparison and
improvements. Technical Report 275, Department of Informatics,
University of Bergen, 2004.

[Sch04b] H.G. Schaathun. Fighting three pirates with scattering codes. Tech-
nical Report 263, Department of Informatics, University of Bergen,
jan 2004.

110

BIBLIOGRAPHY

[SDF02a] F. Sebé and J. Domingo-Ferrer. Scattering codes to implement short
3-secure fingerprinting for copyright protection. Electronic Letters,
38:958–959, aug 2002.

[SDF02b] F. Sebé and J. Domingo-Ferrer. Short 3-secure fingerprinting codes
for copyright protection. In ACISP 2002, volume 2384 of Springer
Lecture Notes in Computer Science:316–327, 2002.

[SFM05] H.G. Schaathun and M. Fernandez-Muñoz. Boneh-shaw fingerprint-
ing and soft decission decoding. In Information Theory Workshop,
sep 2005. Rotorua, NZ.

[Tar03] G. Tardos. Optimal probabilistic fingerprinting codes. In Proceed-
ings of the 35th Annual ACM Symposium on Theory of Computing,
2003.

[Wag83] N.R. Wagner. Fingerprinting. In Proceedings of the 1983 Symposium
on Security and Privacy, 1983.

[YII98] J. Yoshida, K. Iwamura, and H. Imai. A coding method for collusion-
secure watermark and less decline. In:SCIS’98, Number 10.2A, 1998.

111

