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ABSTRACT
A fleet of tugs along the northern Norwegian coast

must be dynamically positioned to minimise the risk of
oil tanker drifting accidents. We have previously presented
a receding horizon genetic algorithm (RHGA) for solving
this tug fleet optimisation (TFO) problem. In this paper, we
begin by presenting an overview of the TFO problem and
the details of the RHGA. Next, we identify and correct a
flaw in the original cost function of the RHGA. In addition,
we present several new cost functions that can be used
for dynamic resource allocation by an algorithm such as
the RHGA. In a preliminary simulation study, we correct
and extend the simulation scenarios used in our previous
work and examine the merit of each of the suggested cost
functions. Finally, we discuss the potential for an objective
evaluation method for comparing various TFO algorithms
and briefly present our TFO simulator.

INTRODUCTION
Thousands of ships, including several hundred oil

tankers, move along the northern Norwegian coastline
every year, making it susceptible to the risk of drift
grounding accidents and oil spill (Havforskningsinstituttet,
2010). Constantly attempting to reduce the risk of such
accidents, the Norwegian Coastal Administration (NCA)
runs a vessel traffic services (VTS) centre in the town
of Vardø that administers a fleet of tugs patrolling the
coastline. The role of the VTS centre is to continuously
order the tugs to new positions in a manner such that if an
oil tanker loses manoeuvrability, e.g., through steering or
propulsion failure, there will be at least one tug sufficiently
close that it can intercept the drifting oil tanker before it
runs ashore (Eide et al., 2007a).

To aid the NCA with positioning their fleet of tugs, a set
of risk-based decision support tools based on dynamical
risk models have been developed (Eide et al., 2007a,b).
The risk models are based on real-time information such
as wind, waves, currents, geography, kind of oil tankers
in transit, their crew, and the estimated oil spill size and
potential impact, to mention some. Using the decision

support tools aids the human operator at a VTS centre
in directing tugs towards high-risk target areas.

The abovementioned decision support tools do not tell
explicitly which tugs should move where; that is still an
informed decision based on the operators experience and
currently available information. Since the number of oil
tanker transits are expected to rise significantly in com-
ing years (Havforskningsinstituttet, 2010), the problem of
positioning the tugs can quickly grow and become unman-
ageable for human operators. Consequently, there is a need
of an algorithm able to calculate position trajectories that
each tug should follow in order to reduce the overall risk
of drifting accidents.

In our Dynamic Resource Allocation with Maritime
Application (DRAMA) research group at the Aalesund
University College (AAUC), we have solved this tug
fleet optimisation (TFO) problem by means of a receding
horizon genetic algorithm (RHGA) (Bye et al., 2010; Bye,
2012). This algorithm combines methods from control
theory and computational intelligence to iteratively plan
movement trajectories for each individual tug such that
the net collective behaviour of the tugs as measured
by a cost function is optimised by means of a genetic
algorithm (GA). Subsequently, at last year’s meeting of
this conference, we presented a modified version of the
RHGA called the receding horizon mixed integer pro-
gramming algorithm (RHMIPA) in which we reformulated
our choice of cost function such that it turned into a
linear programming problem (Assimizele et al., 2013).
Notably, the cost function is the same in the RHGA and
the RHMIPA, it is only the mathematical formulation that
differs. Whereas the RHGA typically will return a good,
albeit inexact and suboptimal solution, at every run, the
RHMIPA in contrast finds an exact, global minimum of
the cost function.

Since both algorithms are identical except for the
method used for minisiming the very same cost function, a
simple measure for comparison is simply the accumulated
cost, for which the exact MIP solver in the RHMIPA
will cause it to outperform the RHGA, which uses a
suboptimal, heuristic GA solver. Unsurprisingly, perhaps,
this superiority of the RHMIPA comes at the cost of slower
computational evaluation when compared to the heuristic
RHGA (Assimizele et al., 2013).

In keeping with the real-world nature of the TFO prob-
lem, both algorithms were also compared with a realistic
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option that the NCA and Norwegian policymakers regu-
larly consider, namely that of a static policy in which the
tugs are uniformly positioned at base stations spread out
along the coastline. Obviously, in terms of cost function
minimisation, the active tug fleet patrol scheme of the
RHGA and the RHMIPA both outperform the static policy
in which tugs are waiting passively for an incident to occur
(Bye et al., 2010; Bye, 2012; Assimizele et al., 2013).

The work presented in this paper was motivated by
the desire to (1) continue our development of the RHGA
with a particular focus on optional cost functions, and (2)
rewrite and formalise the implementation of the algorithm
and simulation scenarios in a TFO simulator.

With respect to (1), we recently identified what appears
to be a flaw in the cost function used for the RHGA
and RHMIPA. In addition to rectifying this error, we
wanted to examine several other choices of cost func-
tions. A particular challenge, then, is the comparison and
evaluation of cost functions. Using a naive heuristic or a
simple method such as the static policy above constitute
an indirect measure for comparing algorithms, where each
algorithm’s performance versus the naive heuristic or static
policy is compared instead of a direct comparison of
the algorithms’ ability to minimise some common cost
function. However, when designing new algorithms for
the TFO problem that employ new and different cost
functions, the methods for comparing algorithms above are
of limited value, since different cost functions by definition
are not directly comparable. Hence, there is a need for
some kind of common, objective method for evaluating
the merit of a particular choice of cost function in a TFO
algorithm.

With respect to (2), our previous work has shown us
that the TFO problem is an excellent case study for the
DRAMA research group, with still many aspects of the
TFO problem yet to be examined. Specifically, we want
to investigate how a TFO algorithm can be able to handle
a variety of simulation scenarios, including oil tankers
entering or leaving the patrol zone; changes in number
of tugs and oil tankers; changing weather conditions, drift
trajectories, and maximum tug speeds; and much more
(see Discussion). To answer these questions, we have com-
pletely rewritten our code base using the advanced, purely-
functional programming language Haskell.1. Part of the
motivation for choosing a functional language like Haskell
was to enable fast prototyping while keeping our code
robust, concise, and not the least correct. Another reason
was the potential for extensions into parallel programming,
which may be required as the simulator grows more
complex and more computational resources are needed.

In the following sections, we proceed by presenting
the formulation of the TFO problem as defined in Bye
et al. (2010); Bye (2012); Assimizele et al. (2013). Next,
we point out what we believe is a flaw in the original
cost function employed in the RHGA, and present a
number of optional cost functions. We then propose a
new and objective evaluation method that can be used for

1http://www.haskell.org

comparing various TFO algorithms. Finally, we present
some simulation results and discuss the viability of our
approach as well as future work.

TFO PROBLEM FORMULATION
For formulating the TFO problem, we adopt most of the

assumption in our previous work (Bye et al., 2010; Bye,
2012; Assimizele et al., 2013). First, assume that No oil
tankers move in one dimension only (north or south, say)
along a line of motion z. This is a reasonable assumption
considering that oil tankers by law follow predefined
piecewise-linear corridors. Second, inside of z and closer
to shore, assume that Np tugs are patrolling along a line
of motion y parallel to z. Although the coastline is rather
rugged, with fjords, peninsulas, and islands, tugs should
stop drifting ships before they reach land or danger zones,
thus a straight patrol line some distance from the rugged
coastline can be considered a conservative choice.

Next, we assume real-time access to simulation data
from a set of accurate models able to predict future posi-
tions of oil tankers along z and the corresponding potential
drift trajectories given current and predicted information
about the tankers themselves and the environment they are
operating in. Such models exist and are currently an active
focus of research (e.g., see Hackett et al. (2006); Breivik
and Allen (2008); Breivik et al. (2011)).

For example, consider an oil tanker currently positioned
at z(t). There is a small chance that the tanker may
suffer from engine failure or some other incident and
start drifting right now at t = td. However, if not,
it may also continue sailing along z. We may predict
the future positions of the tanker some time Th hours
ahead in time, where Th is called the prediction horizon.
Employing a discrete-time model with a sampling period
of Ts = 1 hour, the estimated future tanker positions are
given by {ẑ(t|td)} for t = td + 1, td + 2, . . . , td + Th.

For each predicted point ẑ(t|td), there is a correspond-
ing predicted drift trajectory starting at ẑ(t|td) that may or
may not intersect the patrol line y after an estimated drift
time ∆̂ into the future depending on ocean currents, wave
heights, wind conditions, oil tanker shape and weight, and
other factors.

In previous work, we either set the estimated drift time
∆̂ to be 8 hours for all oil tankers (Assimizele et al., 2013),
or to be drawn randomly for each oil tanker from a uniform
probability distribution in the interval [8, . . . , 12] hours
(Bye et al., 2010; Bye, 2012). According to Eide et al.
(2007a), these drift times correspond to situations of “fast
drift” and not the typical, or average, case. On the other
hand, it should be kept in mind that there will inevitably
be a delay between when an oil tanker begins drifting and
when the VTS centre actually is notified of the incident
and can order tugs to the rescue.

Collecting all predicted drift trajectories for all oil
tankers results in a distribution of crosspoints located at
points where future drift trajectories will intersect the
patrol line y. A crosspoint of the cth oil tanker’s drift
trajectory at time t can be defined as yc

t . Taking the drift
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time ∆̂ into account, a drift trajectory starting on z at
t = td will have a a cross point on y at t = td + ∆̂.
Assuming the same drift time for all drift trajectories and
considering the prediction horizon Th, there is a predicted
set of crosspoints given by

{yc
t} =

{
yc

td+∆̂, yc
td+1+∆̂, . . . , yc

td+Th

}
(1)

In addition to crosspoints, we define a patrol point (tug
position on y) on the pth tug’s patrol trajectory at time t
as yp

t .
Based on the predicted future distribution of crosspoints,

the TFO problem is to calculate trajectories, or sequences
of patrol points, along y for each of the patrolling tugs such
that the risk of an oil tanker in drift not being reached and
prevented from grounding is minimised.

Figure 1 shows a graphical representation of the prob-
lem description, exemplified by two patrolling tugs and
three oil tankers.

COST FUNCTIONS
Original Cost Function f1

Determining a suitable cost function for optimisation
algorithms such as the RHGA and the RHMIPA is im-
perative for the algorithm to be able to find desirable
solutions. The cost function we present firstly is the same
as the one used in these algorithms (Bye et al., 2010; Bye,
2012; Assimizele et al., 2013) and is defined as the sum
of the distances between all crosspoints and the nearest
patrol points. The rationale behind this choice is that if
an oil tanker in drift can/cannot be saved by a tug some
distance away, it is not important that other tugs further
away can/cannot save it at a later time.

For No oil tankers and Np patrol tugs, the cost f1(t) is
defined mathematically as

f1(t) =
td+Th∑
t=td

∑
o∈O

min
p∈P
|yc

t − yp
t | (2)

for each oil tanker o ∈ O = {1, 2 . . . , No} and each patrol
tug p ∈ P = {1, 2 . . . , Np}.

Note that choosing distance as a cost measure is equi-
valent to minimum rescue time if one assumes that all tugs
have the same maximum speed. For cases where tugs have
different maximum speeds, one could define rescue time
as distance divided by maximum tug speed and add up the
minimum rescue times for each cross point.

An example scenario with six oil tankers and three
tugs is shown in Figure 2 (adapted from (Assimizele
et al., 2013)), where an optimal solution found by the
RHMIPA (bottom) is compared with a static policy (top)
where tugs simply remain at their individual base station.
Employing the RHMIPA, the patrol tugs spread out and
track different clusters of crosspoints, thus collectively
reducing the overall risk of grounding.

Cost Function f2

The cost function f1 presented above adds up the abso-
lute value of the distance between every cross point and its

nearest patrol point. This means that in situations where
a particular patrol point lies between two crosspoints, its
exact position does not affect the cost, since being closer to
one of the crosspoints means being further away from the
other. This may or may not be what we want. If we prefer
the patrol point to be positioned midway between the two
crosspoints, we could use the square of the distance instead
of the absolute value, such as in cost function f2:

f2(t) =
td+Th∑
t=td

∑
o∈O

min
p∈P
|yc

t − yp
t |

2 (3)

The reason is that by using the square, we punish larger
distances more than smaller distances.

A Flaw In The Original Cost Function
Let the alarm time ta denote when the tugs are alarmed

that an oil tanker is adrift, and, as before, let td be the
time the oil tanker actually starts drifting. Using the cost
functions f1 and f2 for planning the trajectories of the
tugs implies the assumption that ta = td, that is, the tugs
are alarmed immediately, and that tugs will continue to
execute their original plans even after receiving an alarm.
In reality, however, these assumptions are unrealistic. First
of all, oil tankers will typically have drifted for some time,
3 hours say, before the tugs are alarmed, and hence, in
general, td will occur earlier than ta. Consequently, we
can define a new, and shorter, drift-from-alarm (DFA) time
∆̂a, which is the drift time from the tugs receive an alarm
at ta until the drifting tanker crosses the patrol line at
a crosspoint. For example, let us consider Figure 2, and
assume that all oil tankers will take an estimated ∆̂ = 11
hours, say, to drift aground from current positions. Hence,
the first crosspoints that appear at t = 8 correspond to oil
tankers starting drifting at t = td = −3, the NCA being
alarmed 3 hours later at t = ta = 0, and the DFA time
becomes ∆̂a = 8 hours. Likewise, the crosspoints that
appear at t = 9 correspond to oil tankers starting drifting
at t = td = −2, the NCA being alarmed at t = ta = 1,
the DFA time becomes ∆̂a = 8 hours, and so on.

Second, when alarmed, tugs should abandon their plans
and make every effort to intercept a drifting tanker before
it runs aground. More relevant, therefore, are the positions
of the tugs when they receive the alarm at time ta, and the
hypothetical future positions where drifting tankers will
cross the patrol line some ∆̂a hours later, where ∆̂a is the
total drift time (8–12 hours) less the time it takes before
the tugs are being alarmed (3 hours), thus ∆̂a is in the
range 5–9 hours.

Cost Function f3

To address the issues raised above regarding the original
cost function f1, we propose a modified cost function f3
as given below:

f3(t) =
ta+Th∑
t=ta

∑
o∈O

min
p∈P

∣∣∣yc
t+∆̂a

− yp
t

∣∣∣ (4)



Figure 1: TFO Problem: Where Should Tugs Move?

Compared with f1, f3 is modified in two ways: (1) in the
first sum, time t is upper-limited by ta + Th instead of
td + Th and lower-limited by ta instead of td; and (2) in
the absolute value term, we measure the distance between
each cross point at some future cross time t + ∆̂a and the
position of the nearest tug at the alarm time t, and do this
for the current and future potential alarm times.

Cost Function f4

Again, combining the option of squaring the distances
in f2 with the modification in f3, we also propose the cost
function f4 given by

f4(t) =
ta+Th∑
t=ta

∑
o∈O

min
p∈P

∣∣∣yc
t+∆̂a

− yp
t

∣∣∣2 (5)

Cost Function f5

Yet another option for the choice of cost function is to
categorise crosspoints within a certain safe range r as very
likely to be reachable before grounding by a particular tug
and therefore not to include these crosspoints in the cost
function evaluation. Considering f3 presented above, we
simply subtract the safe range r from the distance and if
the result is negative, we raise it to zero, as shown in f5
below:

f5(t) =
ta+Th∑
t=ta

∑
o∈O

max
{

0, min
p∈P

∣∣∣yc
t+∆̂a

− yp
t

∣∣∣− r

}
(6)

A reasonable and conservative choice for r could for
instance be half the expected distance a tug can travel from

an alarm is received until the first hypothetical crosspoints
occur.

In terms of minimising this cost function, one challenge
will be that of flat cost surface regions for crosspoints
within the safe range, which makes it more difficult to
find an optimal solution.

Cost Function f6

For the last cost function we will present, we continue
to use the safe range r for measuring the number of
unreachable crosspoints. If crosspoints are outside the safe
range, we add 1 to the accumulated cost, otherwise 0. The
cost function is given by f6 below:

f6(t) =
ta+Th∑
t=ta

∑
o∈O

g

(
min
p∈P

∣∣∣yc
t+∆̂a

− yp
t

∣∣∣) , (7)

g(x) =
{

1, if x > r.

0, otherwise.
(8)

Objective Evaluation Method For TFO Algorithms
By definition, the costs of different cost functions are

not directly comparable, and we therefore need some kind
of objective evaluation method for making comparisons.
Here, we suggest that one such method is to (1) generate
a deterministic and reproducible simulation scenario; (2)
run the RHGA (or another TFO algorithm) for a given
number of planning steps; (3) considering each oil tanker
separately, assume each tanker begins drifting and count
the number of salvageable tankers; (4) for the same
simulation scenario, repeat (2) and (3) with a different



(a) Static Policy

(b) Optimal RHMIPA Solution

Figure 2: Example TFO Scenario

cost function in the RHGA (or a different TFO algorithm);
and (5) repeat (1)–(4) for a number of different simulation
scenarios and find the accumulated objective evaluation
cost for each cost function (or TFO algorithm).

A simulation scenario in this case is simply a set of
pre-determined oil tanker movements and the resulting
hypothetical drift trajectories and crosspoints for a pre-
specified duration. For testing purposes, we can generate
a number of such scenarios offline and use them as
input data for testing TFO algorithms. In a real-world
application, the actual scenario is what that is happening
right now, and future oil tanker positions, drift trajectories,
and crosspoints would have to be predicted in real-time.

Other possible objective measures exist, e.g., we could
sum up the total fuel consumption and use it as a compon-
ent of an overall objective measure if that is of interest.

RECEDING HORIZON CONTROL

Above, we have presented a number of cost functions
that can be minimised, with a GA or otherwise, to return
a set of optimal tug trajectories. However, we need to
present a method for handling the dynamic nature of
the environment and parameters involved, and therefore
adopt the principle of receding horizon control (RHC)
that we have employed previously Bye et al. (2010); Bye
(2012). Because neither oil tankers’ speed and heading,
nor wind, wave, and ocean current conditions are static, the
resulting predicted future distribution of crosspoints will
change, and patrol trajectories optimised by the GA will
soon become outdated. One possibility for overcoming this
problem is to run the GA at regular intervals, constantly
incorporating updated current information about the state
of the oil tankers and weather conditions as well as
updated predictions of these factors. While tugs begin
to move according to the solutions planned by the GA,



new patrol trajectories can be calculated and replace the
old ones. This feedback strategy is equivalent to a RHC
scheme, which is interchangeably termed model predictive
control (MPC) in the literature (e.g., see Maciejowski
(2002); Rossiter (2004) for theoretical treatments).

In RHC, a control strategy that minimises some cost
function is calculated a prespecified duration, namely the
prediction horizon, into the future. However, only the first
portion of this strategy is implemented before another
control strategy is calculated based on new and predicted
information available. The new solution replaces the old
one but again only the first portion is implemented. This
process repeats as a sequence of RHC planning steps.

A particular advantage of using RHC is that constraints
can be handled in the design phase and not post hoc (e.g.,
see Goodwin et al. (2001); Maciejowski (2002)). For tugs,
one such constraint is the inherent limitation of moving
no faster than the maximum possible speed limited by the
ship’s engine, weather conditions, or even the wish to save
fuel if one wants to take that into account. This maximum
speed limits the number of reachable crosspoints. Using
RHC it is possible to incorporate this constraint in the
planning of tug patrol trajectories.

GA Optimisation Between Planning Steps
In the RHGA, a GA is used to solve an optimisation

problem at every RHC planning step. A good choice of
initial population allows the GA to find good solutions in
fewer iterations than simply using a random population. It
is possible to take the dynamics of the simulated scenario
into account and, assuming that the scenario will not
change significantly, a solution found at one planning step
should also be a viable solution at the next planning step.
This is achieved by an elitist strategy of keeping (a slightly
modified version of) the best chromosome at one RHC step
and inserting it into the initial population of the GA at the
next RHC step. More details on the RHGA is outside the
scope of this paper and has been presented previously (Bye
et al., 2010; Bye, 2012).

SIMULATION RESULTS
Figure 3 shows an example simulation scenario where

three tugs (black circles) are positioned at y =
[−500, 0, 500] at t = 0 and six oil tankers (not shown)
are randomly positioned in open water along the oil
tanker corridor z, limited to an observation zone of
[−750, 750] km. All plots depict time along the horizontal
axis and position along the vertical axis. Using each of
the cost functions presented previously, the plots show
the first RHC planning step at t = 0 and the planned
tug trajectories 24 hours ahead in time that collectively
minimise the respective cost functions.

The tugs are limited to a maximum speed of 20 km/h,
whereas the speeds of the oil tankers are randomly drawn
from a uniform distribution on [20, 30] km/h. Drift traject-
ories are perpendicular onto the patrol line, and crosspoints
(red crosses) are generated from extrapolating the future
positions of oil tankers and their resulting drift trajectories.

Note that compared with previous work, we have reduced
the maximum speed of the tugs from 30 km/h to 20 km/h,
thus making it more difficult for tugs to cover potential
crosspoints. The speeds used above are in line with the
literature (e.g., Det Norske Veritas (2009), Eide et al.
(2007a)).

Another difference when compared with our previous
work is the more realistic scenario of oil tankers leaving
or entering the observation zone. For simplicity, we have
implemented this feature such that whenever an oil tanker
leaves the zone to the north or south, another oil tanker
enters at the opposite end.

We have drawn random drift durations for each oil
tanker from a uniform distribution on [8,9,. . . ,12], and set
the alarm times used for f3–f6 to occur 3 hours after time
of drift td. Hence, although we have shown crosspoints
for the entire simulation interval, no crosspoints at time
t = 8−3 = 5 or earlier will have an effect in the evaluation
of cost functions f3–f6. Likewise, without the alarm time,
no crosspoints at time t = 8 or earlier will have an effect
in the evaluation of cost functions f1 and f2.

For f5 and f6, we set the safe region r = 50 km, using
a conservative value corresponding to half the maximum
speed (= 10 km/h) times the number of hours until the
first crosspoints can occur, namely 5.

Effect Of Alarm Time
Let us first examine the effect of our newly introduced

alarm time ta in cost functions f3–f6, which means using
the distances between crosspoints and the corresponding
tug positions at the time of an alarm. Compared with
f1 and f2, it seems evident that including the alarm
time causes the trajectories to better anticipate future
crosspoints. For example, the planned trajectory for the
bottom tug of f3–f6 turns north already around t = 2 to
t = 4, whereas this turnaround does not occur until t = 8
or t = 9 for f1 and f2.

Similarly, planned trajectories using f3–f6 clearly takes
into account some future cost for the latter half of the
simulation period, where many tugs turn the opposite
direction of the tug trajectories planned using f1 and f2.

In short, it appears that for any point in the tug traject-
ories, the algorithm asks itself “where should the tugs be
some hours ahead in time when the first crosspoints can
occur?” and directs the tugs accordingly.

Effect Of Squaring
The effect of squaring can be seen for f2 vs. f1 and

for f4 vs. f3. For f2 (squared) vs. f1 (non-squared),
the planned trajectories for tugs are more likely to be
positioned in-between crosspoints when using the squared
cost function. For f4 (squared) vs. f3 (non-squared),
another, related effect is visible for the bottom tug, which
turns south to cover more of the southernmost cross points.
Indeed, since squaring means punishing larger distances
more, examination of several simulation scenarios not re-
produced here shows that squaring leads to tugs spreading
out more and covering larger areas.
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Figure 3: RHGA Planning Using Cost Functions f1–f6



Effect Of Safe Region r

The effect of employing a safe region r = 50 km is
shown for f5 and f6, which can be compared with f3
that does not have a safe region. Comparing f5 with f3,
the two topmost tug trajectories are more or less the same,
whereas using a safe region causes the bottom tug to travel
south towards the end of the simulation scenario for f5.
If we employ f6, which accumulates all non-reachable
crosspoints and weights them all equally as a value of
unity, the top tug trajectory is quite equal to that of f3,
the middle tug trajectory seeems a bit like a lagged version
of the middle tug trajectory of f3 and f5, and finally, the
bottom tug trajectory of f6 is quite stationary compared
with f3 and f5.

Objective Evaluation Of TFO Algorithms
Above, we suggested counting the number of unsal-

vageable oil tankers at every point in time as an objective
evaluation method for comparing TFO algorithms. Here,
we used this measure to compare each of the cost functions
but there was little difference between the cost functions
(not shown graphically). Examination of a number of
simulation scenarios does seem to indicate that f1 and f2
perform worse than the others, but this needs a quantitative
analysis to be confirmed.

Conclusions
In the above, we have made some qualitative interpreta-

tions of a particular simulation scenario with respect to our
proposed cost functions. Similar qualitative interpretations
have been made for a number of simulation scenarios
not presented in this paper. Our study is largely work-
in-progress and needs to be expanded upon to include
quantitative analyses for comparing the properties, pros
and cons, of different cost functions and TFO algorithms.
Nevertheless, we think our observations are worthwhile,
and in particular, we believe the simulation results add to
our proposition that the original cost function f1 (and f2,
which is just a squared version of f1) has a flaw by not
including an alarm time and using the distances between
tug positions at the time of an alarm and future positions
of tankers after a DFA time ∆̂a. Unfortunately, no strong
conclusions can be made about our suggestion for an
objective evaluation method for comparing cost functions
just from the qualitative results presented here.

DISCUSSION

We have previously presented a formulation for a TFO
problem and two algorithms, the RGHA and the RHMIPA,
that solve it (Bye et al., 2010; Bye, 2012; Assimizele
et al., 2013). Here, we identify a flaw in the cost function
employed in the RHGA, namely the assumptions that
tugs will be alarmed immediately when an oil tanker
begins drifting, and that tugs will continue to execute their
original plans even after receiving an alarm. Clearly, these
assumptions are unrealistic. We point out how this flaw can

be corrected by means of defining a new, and shorter, drift-
from-alarm (DFA) time, which is the estimated drift time
from tugs receive an alarm until the drifting tanker crosses
the patrol line. Incorporating this DFA time, we suggest
several new cost functions that make comparisons between
positions of tugs at the time of an alarm and the hypo-
thetical future crosspoints of drifting tankers. This ensures
that tugs abandon their planned original plans immediately
upon receiving an alarm. The suggested cost functions can
be used in a RHGA or in other TFO algorithms. We have
tested the RHGA with a number of cost functions and
simulation scenarios in our recently developed simulator
framework. The simulation scenarios used in our previous
work have been corrected and extended by allowing the
realistic option of oil tankers both leaving and entering
an observation zone, as well as lowering the maximum
speed of patrol tugs to 20 km/h, thus making the problem
even more complex to solve. Finally, we have suggested
an objective evaluation measure for comparing various
TFO algorithms and/or cost functions. More testing and
analyses are needed in order to evaluate both the merit
of the different cost functions and the suitability of the
objective evaluation measure. The results are preliminary
and a reflection of this paper as a report on work-in-
progress but valuable nonetheless.

Simulator Framework

A thorough presentation of our new simulator frame-
work requires a separate paper but we will cover the essen-
tial below. We chose the purely-functional programming
language Haskell for our implementation, which means
that functions in Haskell are pure, there is no global state,
and no side effects. Code written in Haskell is therefore
less error-prone and usually more concise, compact, and
readable than imperative programming languages like C or
Java. An additional advantages that “comes for free” with
a functional language is a focus on what the programmer
wants to achieve, rather than how, since functional pro-
gram specifications can simply be executed directly rather
than translated into imperative code.

A challenge, however, can be the use of pseudo-random
number generators (PRNGs), which, by definition, are
impure and require book-keeping of a system state. Never-
theless, using a functional language like Haskell provides
a clear separation between pure and impure functionality,
thus reducing this book-keeping to a minimum.

Whilst being strongly typed, and thus avoiding compile-
time core dumps, Haskell uses polymorphism, which
enhances the reusability of code. Many functions can
therefore be written only once, because they accept input
and output variables of many different types.

Haskell is also a good choice for parallel programming,
which we believe is likely to be needed as the complexity
of our simulator grows. Using pure parallelism guarantees
deterministic processes and zero race conditions or dead-
locks, however, non-pure concurrency related to PRNGs
and other processes is also required.



Finally, it is worth mentioning that Haskell is a non-
strict, lazy language, meaning that evaluation only happens
on demand. This removes the need for the programmer to
pre-allocate memory such as fixed-size arrays, and makes
it easier to write modular programs, since functions can be
passed freely to other functions, be returned as the result
of a function, and stored in data structures.

Our choice of using Haskell for implementation makes
our simulator very extendable and we are therefore confid-
ent that we will be able to perform several comprehensive
and quantative studies in the time to come.

Future Work
There are several directions the DRAMA research group

wishes to pursue in the way forward. First of all, we need
to perform an extensive simulation study based on what
we have presented here. This will include simulating a
large number of scenarios and examining if our proposed
objective evaluation method can be used for comparing
our proposed cost functions, and more generally, for
comparing TFO algorithms.

Furthermore, our simulator needs to be extended to
accommodate a large number of realistic simulation para-
meters and scenarios, including variable maximum speeds
of tugs (the maximum speed of a tug constantly varies
with wave height and sea roughness at the geographical
location), tugs being temporarily unavailable (e.g., due to
change of crew), realistic drift trajectories based on real-
istic models, fuel consumption and environmental impact,
and 2D scenarios (e.g., oil tankers entering or leaving port
represent high risk).

Moreover, we are already working on probabilistic mod-
els, for example for assigning risk weights to oil tankers
depending on factors such as the geographical location or
size and type of oil being carried; for generating continous
probability distributions of crosspoints; and for quantifying
the probabiliy of intercepting tankers in drift.

Finally, it would be of interest to include historical
records of traffic data for both oil tankers and tugs in
the simulator and determine the performance of the real-
world tugs compared to various TFO algorithms. Such
a comparison, if thorough and sound, can be used for
analytical purposes and to provide support (or lack thereof)
of using TFO algorithms as a decision-support tool at the
VTS centres around the world.
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