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Abstract: A fleet of tugs along the northern Norwegian coast must be dynamically positioned to minimise the risk of
oil tanker drifting accidents. We have previously presented a receding horizon genetic algorithm (RHGA) for
solving this tug fleet optimisation (TFO) problem. Here, we first present an overview of the TFO problem, the
basics of the RHGA, and a set of potential cost functions with which the RHGA can be configured. The set
of these RHGA configurations are effectively equivalent to a set of different TFO algorithms that each can be
used for dynamic tug fleet positioning. In order to compare the merit of TFO algorithms that solve the TFO
problem as defined here, we propose two evaluation heuristics and test them by means of a computational
simulation study. Finally, we discuss our results and directions forward.

1 INTRODUCTION

Several thousand ships transit along the northern
Norwegian coastline every year, with the latest figures
of 2013 including 1,584 so-called “risky transports,”
of which 298 were ships with oil or other petroleum-
related cargo on board (Vardø VTS, 2014b). With the
recent increase in traffic through the Northwest Pas-
sage and the projected increase in oil exploration in
the High North (Havforskningsinstituttet, 2010), the
Norwegian coastline is increasingly exposed to the
risk of incidents with potentially high impact on the
environment. Indeed, in 2013 alone, the Vardø Ves-
sel Traffic Service (VTS) registered 286 operational
incidents, including 186 incidents of drifting vessels,
29 of grounding, 36 of pollution, 10 of fire, and 7
shipwrecks (Vardø VTS, 2014a).

The Vardø VTS is located at the northeasternmost
point of Norway and is run by the Norwegian Coastal
Administration (NCA) (see Figure 1). Among other
duties, the VTS constantly monitors ship movements,
maintains dialogue with ships, and manages the tug
fleet of Norway.

As noted above, there is an incident of a drift-
ing vessel occurring about every second day on av-
erage. A number of these vessels are high-risk ships
such as oil tankers, which if allowed to drift aground
can cause serious damage to the environment due
to spillage of oil and fuel. In a measure to avoid

Figure 1: Northern Norwegian coastline and the Vardø VTS
(shown with its call signal NOR VTS). Solid line is the geo-
graphical baseline; stapled line is the border of the Norwe-
gian Territorial Waters (NTW); thick pink line is the traffic
corridor for the Traffic Separation Scheme (TSS). Adapted
from Vardø VTS (2011).

such incidents, the VTS is constantly instructing its
patrolling fleet of tugs to move to new positions in a
manner such that if an oil tanker loses manoeuvrabil-
ity, e.g., because of engine or propulsion problems or
steering failure, tugs should be sufficiently close that
it can intercept the drifting oil tanker before it runs
aground (Eide et al., 2007a).

A set of risk-based decision support tools based
on dynamical risk models have been developed previ-
ously (Eide et al., 2007a,b). The models incorporate a
number of factors such as wind, waves, currents, geo-



graphy, types of ships in transit, and potential envir-
onmental impact should drift grounding occur. Whilst
such tools can aid the human operators at the VTS
in making informed decisions about tug fleet posi-
tioning, they do not tell explicitly where tugs should
move; instead, they give the operators a real-time risk
map divided into zones of low, medium, and high risk.

The number of oil tanker transits is expected to
rise significantly in coming years (Havforskningsin-
stituttet, 2010), therefore, the problem of command-
ing tugs to “good” positions may become unmanage-
able for human operators. Motivated by this chal-
lenge, our Dynamic Resource Allocation with Mari-
time Application (DRAMA) research group at the
Aalesund University College (AAUC) has over the
last few years developed and refined a receding hori-
zon genetic algorithm (RHGA) (Bye, 2012; Bye and
Schaathun, 2014; Bye et al., 2010). The algorithm
iteratively plans individual movement trajectories for
the fleet of tugs such that the net collective behaviour
of the tugs is optimised, that is, it employs a genetic
algorithm (GA) in order to minimise cost functions
that have been specifically designed to reduce the risk
of drift grounding accidents. We have also investig-
ated using mixed integer programming (MIP) for the
optimisation component of the algorithm (Assimizele
et al., 2013).

In our most recent work (Bye and Schaathun,
2014), we identified a flaw in the cost function we
had employed previously, and suggested a number of
other cost functions that could be used instead. A
challenge, however, is the problem of comparing and
evaluating the merit of different cost functions, or in
general, of different TFO algorithms. This challenge
is the focus of the work we present here.

In the following sections, we proceed by present-
ing a model of what we have coined as the tug fleet
optimisation (TFO) problem, before introducing our
RHGA and suggesting a set of possible cost functions
that can be used in the algorithm. Next, we propose a
two new and objective evaluation heuristics designed
for making comparisons of TFO algorithms. Finally,
we test the method on our RHGA with the set of cost
functions in a simulation study and discuss the viabil-
ity of our approach as well as future work.

2 METHOD

2.1 A Model of the TFO Problem

We employ a 1D model of the TFO problem and adopt
most of the principles and assumptions in our earlier
work (Assimizele et al., 2013; Bye, 2012; Bye and

Schaathun, 2014; Bye et al., 2010).
Oil tankers are required by law to follow a pre-

defined corridor, or lane, parallel to the coastline, de-
picted as the pink TSS in Figure 1. In topological
space, the corridor constitutes a curve, which is loc-
ally homeomorphic to a straight line. This means that
the curve can be deformed into a straight line by a
continuous, invertible mapping, and vice versa. Con-
sequently, for model simplicity, we assume that No oil
tankers move in one dimension only along a straight
line of motion z.

To the inside of the corridor, a fleet of tugs patrol
the coastal waters. Ignoring a rugged coastline with
islands, peninsulas and shoals, and by the same topo-
logical argument above, we may assume that Np tugs
are patrolling along a line of motion y parallel to z,
e.g., the geographical baseline depicted in Figure 1.
We do appreciate, however, that this approximation is
only locally correct, since the curvature of y and z will
make the outermost line longer than the innermost
line. We also realise that is may be possible that better
protection is achieved by allowing the tugs to move
freely in a 2D space confined to the area between
the coastline and the oil tanker corridor rather than
being confined to a 1D line of motion. Indeed, our
DRAMA research group is currently investigating us-
ing 2D probabilistic models and exact and heuristic
optimisation techniques such as MIP, stochastic pro-
gramming, and tabu search, thus extending our previ-
ous work (Assimizele et al., 2013).

We have been informed by the NCA that up until
the end of 2013, three tugs have operated in the area
depicted in Figure 1, and that the stretch of coastline
they protect is about 1,500 km. The number of tugs
have since the beginning of 2014 been reduced to two.
Consequently, we give the patrol line y a length of
1,500 km, and are mainly interested in fleets of two
or three tugs. For simplicity, we model y with “hard”
borders to the north and to the south, outside of which
the tugs will ignore drifting ships. In reality, ship
traffic that may result in drift grounding outside the
borders of the patrol line may still be rescued by an
NCA tug, especially to the south, which is Norwegian
territory.

Fundamental to our modelling approach is the ex-
istence and availability of real-time ship traffic in-
formation such as the direction and speed of the oil
tankers. This information is readily available by the
automatic identification system (AIS) that all ships
above 300 gross tonnage are required to use on in-
ternational voyages due to a regulation by the Inter-
national Maritime Organization (IMO).

In addition, we require accurate simulation mod-
els that can predict the future positions of oil tankers
along z and the corresponding potential drift tra-



jectories, given real-time and predicted information
about the tanker movements and the environment the
tankers are travelling through. Developing such mod-
els is outside the scope of the research presented here.
Instead, we are concerned with the planning and con-
trol of a fleet of tugs given that these models and res-
ulting information is readily available.

We note, however, that due to the relatively slow
dynamics of oil tankers, which cannot easily and
quickly change speed or direction, obtaining reason-
ably accurate predicted future positions of the tankers
can be done simply by using dead reckoning or linear
extrapolation or by more advanced techniques such as
a Kalman filter.

Drift trajectory models, on the other hand, rep-
resents a more complex problem, and depend on the
ever-changing dynamics of the ocean, including cur-
rents, waves, and wind, as well the size and shape of
the oil tankers. Nevertheless, although we do not in-
tegrate any such models here, they do exist and are
currently an active focus of research (e.g., see Breivik
and Allen (2008); Breivik et al. (2011); Hackett et al.
(2006); Sørgård and Vada (1998)).

For any oil tanker moving along the line z, there
is a small probability that an incident may occur at
the position z(t), resulting in the tanker starting to
drift at t = td. Naturally, most of the time, nothing
will happen, and the tanker will continue sailing along
z. Employing a discrete-time model with a sampling
period of ts = 1 hour, we assume that we can estimate
the future tanker positions at discrete points in time,
limited to a prediction horizon Th hours into the fu-
ture. For each of the oil tankers, this results in a
set of future tanker positions given by {ẑ(t|td)} for
t = td +1, td +2, . . . , td +Th.

Furthermore, we assume that we can determ-
ine, for example through Monte Carlo simulations,
the most likely hypothetical predicted drift trajector-
ies that emanate from each predicted tanker position
ẑ(t|td). Such trajectories would depend on a number
of actual and forecast conditions in the area, such as
ocean currents and wind speed and direction, and may
or may not intersect the patrol line y after an estimated
drift duration ∆̂ into the future.

According to Eide et al. (2007a), situations of
“fast drift” can have drift durations as fast as 8–12
hours, whereas more typical drift durations are in the
range 16–24 hours. In previous work, in order to
be conservative rather than optimistic, we therefore
either set the estimated drift duration ∆̂ to be 8 hours
for all oil tankers (Assimizele et al., 2013), or to be
drawn randomly for each oil tanker such that ∆̂ ∈
{8,9 . . . ,12} hours (Bye, 2012; Bye and Schaathun,
2014; Bye et al., 2010).

It should also be kept in mind that there will inev-

itably be a detection delay δ between the time when
an oil tanker begins drifting at the drift time td1 and
the time when the VTS centre detects, or is notified
of, the incident at time ta some hours later, which we
call the alarm time. The detection delay is thus given
by δ = ta− td.

If we examine all the future predicted positions for
all the oil tankers as well as all the corresponding drift
trajectories, we obtain a distribution of cross points
located at points where future drift trajectories will
intersect the patrol line y. A cross point of the cth oil
tanker’s drift trajectory at time t can be defined as the
position yc

t . Assuming a drift duration ∆̂, a drift tra-
jectory starting on z(t) at t = td will have a cross point
on y at t = td + ∆̂. Assuming the same drift duration
for all drift trajectories and considering the prediction
horizon Th, there is a predicted set of cross points for
the cth oil tanker given by

{yc
t }=

{
yc

td+∆̂
,yc

td+1+∆̂
, . . . ,yc

td+Th

}
. (1)

Moreover, we define a patrol point as the pth tug’s
position on y at time t as yp

t .
Based on the predicted future distribution of cross

points, we define the TFO problem as the problem
of calculating patrol trajectories (sequences of patrol
points) that start at t = td and have some duration Th,
along y for each of the patrolling tugs such that the
risk of an oil tanker in drift not being reached and
prevented from grounding is minimised.

Figure 2 shows a graphical summary of the TFO
problem as presented above, exemplified by two
patrolling tugs and three oil tankers.

2.2 The RHGA

The TFO algorithm that we study in this paper is the
RHGA (Bye, 2012; Bye and Schaathun, 2014; Bye
et al., 2010). The algorithm consists of two main
components: receding horizon control (RHC) and a
genetic algorithm (GA). The GA is a search heuristic
for solving search and optimisation problems and is
inspired by elements in natural evolution, such as in-
heritance, mutation, selection, and crossover. It has
been attributed to Holland (1975), with subsequent
popularisation by Goldberg (1989), and is currently a
very popular optimisation tool across many different
disciplines, including operations research. The GA
we have implemented in our RHGA is based on work
by Haupt and Haupt (2004).

The optimisation problem must be defined as a
cost function such that, when evaluated for a set of
candidate solutions, the GA is able to distinguish

1Note that td also is used as the start time for planning
patrol trajectories for the tugs to follow.
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Figure 2: TFO problem: Where should the tugs move?

good solutions from bad ones. Specifically, for the
TFO problem, the cost function must be designed
such that its solution is a set of future position tra-
jectories, or collective movement plan, for the fleet of
tugs that minimises the risk of drift grounding acci-
dents to happen.

At any given point in time, the GA can incorpor-
ate real-time information about the current situation,
as well as a prediction of the future, to calculate an
optimal set of patrolling tug trajectories. However,
due to the dynamic nature of the environment and the
parameters involved, the solution will quickly become
outdated. We therefore require some feedback mech-
anism in the algorithm that can update the solution
with changes in ocean conditions such as wind, cur-
rent, and waves, as well as speed and direction of oil
tankers. The mechanism we adopt is the principle of
RHC.

From control theory, it is known that RHC, which
is also called model predictive control (MPC), is one
of very few control methods able to handle constraints
in the design phase of a controller and not via post
hoc modifications (e.g., see Goodwin et al. (2001);
Maciejowski (2002); Rossiter (2004)). For the TFO
problem, one such constraint is the maximum speed
of tugs, which is constrained by factors such as ship
design and weather conditions. This maximum speed
will necessarily limit the number of reachable cross
points. Using RHC it is possible to constantly incor-
porate such constraints in the planning of tug patrol
trajectories, even as conditions change.

In our RHGA, the GA component plans a set of
tug trajectories starting at td and with a prespecified
duration, namely the prediction horizon Th introduced

previously. However, the tugs only execute the very
first time step of their trajectories. In the mean time,
with a start time of td+1, another set of of tug traject-
ories is planned, based on new and predicted informa-
tion available. This new solution replaces the old one
but again only the first portion is implemented. This
process repeats as a sequence of planning steps, thus
creating a feedback loop where updated information
is fed back to the GA. Effectively, the prediction ho-
rizon keeps being shifted into the future, and this has
led to the term receding horizon control.

A thorough presentation of our simulator frame-
work and algorithm implementation is not possible
within the the scope limitations of this paper. Whilst
the RHGA was implemented in Matlab in earlier ver-
sions (Bye, 2012; Bye et al., 2010), we recently re-
wrote the entire code base in the advanced, purely-
functional programming language Haskell (Bye and
Schaathun, 2014), and have used this framework for
the work presented here. For further details about
various aspects of our implementation, we refer to
Bye (2012); Bye and Schaathun (2014); Bye et al.
(2010).

2.3 Cost Functions

Determining suitable cost functions for a TFO al-
gorithm is a key design challenge for the algorithm to
be successful. Below, we will present three possible
cost functions, each of which can be configured to
yield different properties by means of parameterisa-
tion.

2.3.1 Cost Function f1

For the cost function we used in our earliest work (As-
simizele et al., 2013; Bye, 2012; Bye et al., 2010), we
employed a metric defined as the sum of the distances
between all cross points and the nearest patrol points,
based on the argument that if an oil tanker in drift can
be saved by the nearest tug, then it is not relevant if
the other tugs are also able to save the tanker, and if
an oil tanker in drift cannot be saved by the nearest
tug, then it cannot be saved by the other tugs either.
This argument assumes that the tugs all have the same
maximum speed. In this case, this metric is equival-
ent to minimum rescue time, since distances will be
directly proportional to rescue times. If instead the
tugs do not have identical maximum speeds, one can
easily define rescue time as distance divided by max-
imum tug speed and add up the minimum rescue times
for each cross point.

Recently, we decided to examine some other met-
rics, namely squaring the distances and also incorpor-
ating a safe zone (Bye and Schaathun, 2014). The



effect of squaring the distance from a cross point to
a patrol point is that cross points further away will
be penalised more in the cost function. It makes in-
tuitive sense that higher costs should be awarded to
the cross points of tankers that are less likely to be
saved. Similarly, tankers with cross points that are
very close to the position of one or several tugs are
very likely to be saved and can thus be ignored in the
cost function. We incorporate these situations by the
inclusion of a “power” parameter e and raise the dis-
tance to the power e = 2 for squaring, whereas we use
a safe region parameter r to impose no penalty in the
cost function for close cross points.

Combining our original cost function with the re-
cent modifications, we obtain the cost function f1
given by

f1(t) =
td+Th

∑
t=td

∑
o∈O

max
{

0,min
p∈P

∣∣yc
t − yp

t
∣∣e− r

}
(2)

for No oil tankers o ∈ O = {o1, . . . ,oNo}, Np patrol
tugs p ∈ P = {p1, . . . , pNp}, e ∈ {1,2}, and r chosen
as some distance that can confidently be reached by a
tug to enable drift interception and hookup to the ship.
A reasonable and conservative choice for r could for
instance be half the expected distance a tug can travel
from an alarm is received until the first hypothetical
cross points occur.

In terms of minimising this cost function for non-
zero r, a challenge will be that of flat cost surface re-
gions for cross points within the safe range, which
makes it more difficult for the GA to find an optimal
solution.

Note that letting e = 1 and r = 0 yields the cost
function used in our earlier work (Assimizele et al.,
2013; Bye, 2012; Bye et al., 2010).

2.3.2 Cost Function f2

In Bye and Schaathun (2014), we identified a prob-
lem in cost function f1, namely the lack of taking the
detection delay δ = ta− td into account. That is, there
will be a delay from the time td when an oil tanker
starts drifting until the VTS and its tugs are being
alarmed at the time ta some hours later. Cost function
f1 actually implicitly assumes that the VTS will be
notified immediately when a ships starts drifting; an
assumption that is clearly far too optimistic. Instead,
we should assume that oil tankers typically have drif-
ted for some time before the tugs are being alarmed,
and consequently, we must define a new, and shorter,
drift-from-alarm (DFA) time ∆̂a = ∆̂−δ, which is the
drift time from the tugs receive an alarm at ta until
the drifting tanker crosses the patrol line at a cross
point. We will keep our somewhat arbitrary, but real-

istic, choice of δ = 3 hours presented previously (Bye
and Schaathun, 2014) in this paper.

In Bye and Schaathun (2014), we also discovered
a serious flaw with cost function f1 in that it impli-
citly assumes that tugs will continue to execute their
original plans even after receiving an alarm, because
it compares cross points and patrol points at the same
times into the future. Instead, the tugs should of
course abandon their original plans immediately upon
an alarm about a drifting tanker, and make every effort
to intercept it before it runs aground. Therefore, the
cost function should compare the positions of the tugs
(patrol points) when they receive the alarm at time ta,
and the hypothetical future positions where drifting
tankers will cross the patrol line some ∆̂a hours later,
where ∆̂a is the total drift time ∆̂ (8–12 hours) less the
detection delay δ (3 hours), leaving ∆̂a in the range
5–9 hours.

To address the issues raised above regarding the
original cost function f1, we propose a modified cost
function f2 given by

f2(t) =
ta+Th

∑
t=ta

∑
o∈O

max
{

0,min
p∈P

∣∣∣yc
t+∆̂a
− yp

t

∣∣∣e− r
}
.

(3)
Compared with f1, we observe that the cost evaluation
starts at the notification time of alarm ta, and not at the
time of start of drift td, and that in the distance term,
we measure the distance between each cross point at
some future cross time t + ∆̂a and the position of the
nearest tug at the alarm time t, and do this for the
current alarm time t = ta and future potential alarm
times t = ta +1, ta +2, . . . ,+ta +Th.

2.3.3 Cost Function f3

In contrast with f1 and f2 above, another and probably
more realistic cost funtion f3 is simply the number
of unsalvageable tankers. That is, from a pragmatic
point of view, we merely want to consider whether a
tug can reach a drifting tanker in time to prevent it
from grounding, and the distance is otherwise imma-
terial.

We may use the safe range r for counting the num-
ber of unreachable cross points and let this number
constitute a measure for unsalvageable tankers. If
cross points are outside the safe range, we add 1 to
the accumulated cost, otherwise we add 0. The cost
function f3 can then be described by

f3(t) =
ta+Th

∑
t=ta

∑
o∈O

g
(

min
p∈P

∣∣∣yc
t+∆̂a
− yp

t

∣∣∣− r
)
, (4)

g(x) =

{
1, x > 0 (outside r),
0, x≤ 0 (inside r),

(5)



where g(x) is the Heaviside unit step function.
Note that cost function f3 accumulates a binary

penalty (1 or 0) and relies on a safe region r only,
which makes it much more difficult to optimise for
the GA than f1 and f2 due to numerous plateaus of
flat cost surface regions in the cost landscape that the
GA searches through.

2.4 Algorithm Evaluation

How can we compare the performance of different
TFO algorithms, or in our case, the performance
of the RHGA configured with various different cost
functions? By definition, the metrics of different cost
functions are not generally directly comparable, and it
is not always possible to use a cost function which dir-
ectly reflects the real cost of the solution. In the TFO
problem, there are many random elements without
well-understood probability models. Incorporating
these elements in the cost function would make it too
complex to be practical.

2.4.1 Simulation Framework

The solution is a Monte Carlo simulation as shown in
Figure 3, where the complete optimisation algorithm
with cost function can be tested against a large num-
ber of (pseudo) random scenarios.

RHGA

PRNG

Event

PRNG

Cost
Function

Evaluation
Heuristic

Problem
Solution Outcome Result

Figure 3: Simulation model. A pseudo-random number
generator (PRNG) generates simulation scenarios in which
the RHGA uses some cost function Cost 1 to determine a
solution (where tugs should move). The PRNG then gener-
ates an event of drift, which depending on the current posi-
tion of the tugs may be critical or not. The outcome (saving
or not saving the drifting ship) is then quantified as Cost 2
by an evaluation heuristic.

We have two pseudo-random algorithms (PRNG);
one to generate the problem as observed by the optim-
isation algorithm (RHGA), and one to generate the
situation, or event, where the solution is to be ex-
ecuted. For example, the positions of the tankers is
known a priori, and is part of the problem. A tanker
starting to drift is an event which is only known after
the RHGA has provided the solution. Given the solu-
tion and the event, we can evaluate the cost of the
result, e.g., of a grounding accident or a successful

rescue.
The evaluation heuristic may look similar to the

cost function, but there is a critical difference. The
evaluation heuristic evaluates the cost of a particular
event. The cost function has to evaluate a solution
without the knowledge of which event will occur.

There are several stochastic processes governing
the outcome of an event in the model. These pro-
cesses can be internalised either in the Monte Carlo
simulation or integrated analytically in the evaluation
heuristic. We can illustrate this with an example. The
event in the simulation model can be subdivided into
two stages:
1. Oil tanker o starts drifting.

2. Oil tanker o grounds.
If the first event occurs, one ore more patrol tugs will
attempt to rescue the drifting tanker. This rescue op-
eration may or may not succeed, depending largely
on the maximum tug speed as determined by weather
conditions. If it does not, the second event occurs.

One possibility is to stop the Monte Carlo estim-
ation after the first event, and let the cost be equal to
the conditional probability of the second event, that
is, the probability of a failed rescue operation. The
second possibility is to simulate the entire rescue op-
eration. If it succeeds the cost is zero, otherwise it is
the cost of the grounding accident, which may depend
on the type of cargo, geographical location, weather
conditions, and so on.

For the purpose of this work, we evaluate the res-
ult when tanker o starts drifting. We do not simu-
late the rescue operation. The steps of the evaluation
method can be summarised as follows:
1. randomly generate a deterministic and reprodu-

cible simulation scenario;

2. run the RHGA (or another TFO algorithm) for a
given number of planning steps;

3. considering each oil tanker separately, assume
each tanker begins drifting and count the number
of salvageable tankers;

4. for the same simulation scenario, repeat (2) and
(3) with a different cost function configuration in
the RHGA (or a different TFO algorithm); and

5. repeat steps (1)–(4) for a number of different sim-
ulation scenarios and find the accumulated evalu-
ation cost for each RHGA configuration (or TFO
algorithm).

Note that instead of evaluating one random event, we
evaluate one event for each tanker o, where o starts to
drift. This is possible because the number of tankers is
small, and it lets us evaluate a larger number of scen-
arios with little extra time. We propose two candidate
evaluation heuristics h1 and h2.



2.4.2 Evaluation Heuristic h1

The first heuristic is similar to cost function f3 count-
ing the number of salvagable tankers at some alarm
time ta. We will simply assume that each patrol tug p
can save any ship with cross points inside the safe re-
gion r = vp

max∆̂a away, where ∆̂a is the DFA time and
vp

max is the pth tug’s maximum speed, that is, within
the maximal reach of a tug upon a drift alarm. In a
more realistic model, the heuristic should probably be
weather dependent and direction dependent, e.g., go-
ing against the wind is slower than going with it. It
should also include hookup times.

A simulation scenario in this case is simply a set
of pre-determined oil tanker movements and the res-
ulting hypothetical drift trajectories and cross points
for a pre-specified duration. For testing purposes, we
can generate a number of such scenarios offline and
use them as input data for testing TFO algorithms. In
a real-world application, the actual scenario is what
that is happening right now, and future oil tanker po-
sitions, drift trajectories, and cross points would have
to be predicted in real-time.

To sum up, we define the evaluation heuristic h1
as

h1(ta) = ∑
o∈O

g
(

min
p∈P

∣∣∣yc
ta+∆̂a

− yp
ta

∣∣∣− r
)
, (6)

r = vp
max∆̂a (7)

g(x) =

{
1, x > 0 (outside r),
0, x≤ 0 (inside r).

(8)

Other possible objective measures exist, e.g., we
could sum up the total fuel consumption and use it as a
component of an overall objective measure if that is of
interest. Furthermore, the cost of measuring the num-
ber of salvagable tankers does not need to be discrete
(yes/no) but could instead have a continuous probab-
ility distribution attached to it. We could then sum
these probabilities to find an evaluation cost for the
TFO algorithm.

2.4.3 Evaluation Heuristic h2

The evaluation heuristic h1 does not discriminate
between cross points far away from the nearest tug
and cross points that are much closer, as long as they
are all inside the maximal reach from any tug as given
by r = vp

max∆̂a. However, it is clear that due to varying
and non-optimal weather conditions, the maximum
speed of each tug may be much lower than during
ordinary operation. Moreover, h1 does not take into
account that there will be a hookup time when the tug
attaches itself to the drifting ship. In an attempt to

address these issues, we suggest the following evalu-
ation heuristic h2 given by

h2(ta) = ∑
o∈O

(
max

{
0,min

p∈P

∣∣∣yc
ta+∆̂a

− yp
ta

∣∣∣− r
})2

,

(9)

r = vp
min∆̂a, (10)

where the safe region has been reduced to the area
reachable for any tug with some minimum speed vp

min,
which we assume the tug will always be able to main-
tain. Inside the safe region, there is zero cost for
cross points of salvageable tankers, whereas outside,
the cost increases with the square of the distance to
cross points of unsalvageable tankers. Squaring en-
sures that we punish larger distances more.

3 SIMULATION STUDY

3.1 Basic Parameters

Until the end of 2013, the NCA have been using Np =
3 tugs for patrolling the northern Norwegian coast.
However, since the beginning of 2014, the number of
tugs have been reduced to Np = 2. In previous papers,
we have consistently assumed three tugs in the fleet.
Using our evaluation heuristics, we are able to exam-
ine by means of simulations whether there are any dif-
ferences in coastal protection (as we have defined it by
our evaluation heuristics) from this reduction in fleet
size. For completeness, and in order to test our pro-
positioned evaluation heuristics, we will also examine
tug fleets of four, five, or six tugs, as well as the case
of a single patrol tug, hence Np ∈ {1, . . . ,6}.

The stretch of coastline patrolled by the tug ves-
sels that we have termed the patrol line y is about
1,500 km long. Hence, we define our patrol zone
Y as unidimensional along y in the continuous inter-
val Y = [−750,750] km, and constrain cross points yc

and patrol points yp to lie in Y , or yc,yp ∈ Y . For im-
plementation purposes, we also define a tanker zone
Z in the same interval much further away from land
but underline that the (simulated) VTS will still ob-
serve ship traffic outside of this zone. The reason is
of course that a tanker outside the tanker zone Z may
still drift and ground inside the patrol zone Y .

For simplicity, we will assume a patrol zone with
“hard” borders, where cross points outside the patrol
zone are ignored, but as argued in Section 2.1, we do
realise that in reality, the VTS will also consider po-
tential cross points outside of such borders.

Based on historical traffic data, we have previ-
ously assumed that the typical average number of



tankers sailing along z and being watched by the
Vardø VTS is No = 6. From communication with the
NCA, the actual number can be less on certain days
but also higher, especially if we add high risk ships
other than oil tankers that may also be watched care-
fully. Indeed, as mentioned in the introduction, there
were close to 1600 risky transports in the area in 2013
alone, of which about 300 were carrying petroleum-
related cargo (Vardø VTS, 2014b). Additionally, it is
desirable to obtain results comparable with our previ-
ous work. Thus we keep this number of oil tankers
unchanged in this study.

Under normal conditions, we assume that the
patrol tugs are limited to a maximum speed of vp

max =
20 km/h, whereas the speed of each oil tanker vo is
randomly drawn from a uniform distribution such that
vo ∈ [20,30] km/h. Note that compared with previ-
ous work, we have reduced the maximum speed of
the tugs from 30 km/h to 20 km/h, thus making it
more difficult for tugs to cover potential cross points.
These speeds are in line with the literature (e.g., Det
Norske Veritas (2009), Eide et al. (2007a)). We also
assume that even in very bad weather conditions, the
tugs are able to maintain at least a minimum speed of
vp

min = 5 km/h.
Drift trajectories are set to be perpendicular (east-

bound) onto the south-north patrol line y, with as-
sociated drift times drawn randomly from the inter-
val {8,9, . . . ,12} hours and cross points generated
from extrapolating the predicted future positions of
oil tankers and their resulting drift trajectories.

The parameter settings are summarised in Table 1.

3.2 Simulation Scenarios

A simulation scenario consists of simulation-
generated tanker movements along z as well as hy-
pothetical drift trajectories with corresponding cross
points on y. The scenario acts as an input to a TFO
algorithm such as the RHGA and is completely inde-
pendent of what the RHGA calculates and how the
tugs move.

We initialise a scenario by placing No oil tankers
at random positions and with random speeds along
z, headed in either the southbound or the northbound
direction. Next, we sample each of the tankers’ posi-
tions, speeds, and directions at every simulation step
ts = 1 h from the start of the simulation at ti = 0 h
to the final simulation time at tf = 24 h. For any
simulation time td in {ti, ti + ts, . . . , tf}, we suppose
that we have precise real-time information about the
speed and direction of each oil tanker, as provided by
AIS. We also assume that we have an accurate model
that, given this real-time actual information, is able
to predict future positions and speeds of the tankers

at future times td + ts, td +2ts, . . . , td +Th, where Th is
the prediction horizon. Finally, we assume that we
have another accurate model that is able to predict hy-
pothetical drift trajectories and cross points for each
tanker if it starts drifting at time td and also at the fu-
ture times just listed.

Note that since the scenario consisting of oil
tanker movements, drift trajectories, and cross points
is independent of how the fleet of tugs move, we can
replay the same scenario as an input to other TFO al-
gorithms (or variations of the RHGA) in order to eval-
uate and compare the algorithms.

3.3 TFO by the RHGA

For all scenarios, the Np tugs are initialised at simula-
tion time ti = 0 by being uniformly positioned along
the coast at stationary base stations in a manner such
that they can cover as much of the patrol line y as pos-
sible. For example, since we have defined y as a line
constrained to [−750,750] km, a single tug will be
placed at yp

ti = 0, a fleet of two tugs will be placed at
yp

ti = {−375,375}, a fleet of three tugs will be placed
at yp

ti = {−500,0,500}, and so on. From these ini-
tial positions, tugs will begin to actively pursue good
positions for reducing the risk of drift grounding ac-
cidents depending on how the scenario plays out and
how the TFO algorithm will control them.

At any simulation time td, the GA component in
the RHGA uses the predicted distribution of potential
cross points to calculate a plan, which consists of a
position trajectory for each of the tugs in the fleet. The
plan consists of future desired positions for each tug at
times {td +1, td +2, . . . , td +Th}. The plan is optimal
(or close to optimal) in the sense that it minimises (or
tries to minimise) a cost function.

Using RHC, we let the tugs execute only the first
step of this plan and move the tugs from their pos-
itions at t = td to future positions at t = td + 1. At
t = td + 1, the GA plans a new set of desired traject-
ories from t = td + 2 to t = td + Th + 1, but again,
we let the tugs execute only the first step from t =
td + 1 to t = td + 2. This process repeats until the
final simulation time tf = 24, at which we plan for
t = tf, tf +1, . . . , tf +Th, and again, and finally, let the
tugs execute only the first step from t = tf to t = tf+1.

We have then completed one simulation of this
particular scenario using one particular TFO al-
gorithm, in our case, the RHGA employing a partic-
ular configuration of one of the cost functions f1– f3.
The end-of-simulation positions of tugs and tankers
and their cross points are then be used as input to the
evaluation heuristics.



Table 1: Simulation parameters, settings, and units.

Parameters Settings Units

Patrol zone (south-north line) Y = [−750,750] km
Tanker zone (south-north line) Z = [−750,750] km

Number of oil tankers No = 6 -
Set of oil tankers O = {1,2 . . . ,No} -

Number of tugs Np = {1, . . . ,6} -
Set of tugs P = {1,2 . . . ,Np} -

Initial tug positions (base stations) Uniformly distributed km
Random initial tanker positions yo ∈ Z,∀o ∈ O km

Maximum speed of tugs vp
max = 20, ∀p ∈ P km/h

Minimum speed of tugs vp
min = 5, ∀p ∈ P km/h

Random speed of oil tankers vo ∈ [20,30], ∀o ∈ O km/h
Initial simulation time ti = 0 h

Simulation step ts = 1 h
Final simulation time tf = 24 h

Prediction horizon Th = 24 h
Time of start of drift td ∈ {ti, ti +1, . . . , tf} h

Detection delay δ = 3 h
Alarm time ta = td +δ ∈ {ti +δ, ti +δ+1, . . . , tf +δ} h

Drift direction Eastbound -
Estimated drift times ∆̂ ∈ {8,9, . . . ,12} h

Drift-from-alarm (DFA) times ∆̂a = ∆̂−δ ∈ {5,6, . . . ,9} h
Static strategy yp

t = yp
ti , ∀t km

Cost functions F = { f1, f2, f3} -
Distance power e = {1,2}, in f1, f2 -

Safe region r =


{0,50,100}, in f1, f2
{50,100}, in f3
vp

max∆̂a = [100,180], in h1
vp

min∆̂a = [25,45], in h2

km

TFO algorithms Configurations of RHGA( fi,e,r,Np) -
Number of RHGA( fi,e,r,Np) configurations Nconf = 15 -

Number of scenarios Nsc = 1600 -
Total number of simulations Nsim = Nconf×Nsc×dimNp = 144,000 -

3.4 GA Description and Settings

The GA we employ in this study is based on the con-
tinuous GA presented in Haupt and Haupt (2004) and
has been presented in detail in our previous work
(Bye, 2012; Bye et al., 2010). We initialise the
GA with a population size of chromosomes that are
randomly generated. At every iteration of the GA,
Nkeep = 10 chromosomes are selected from the popu-
lation by roulette wheel selection, with low cost chro-
mosomes having a greater chance of being picked.
These chromosomes survive from one generation to
the next and are also used for mating to generate new
offspring that replace the chromosomes that were not
picked. Mating is performed by a combination of
an extrapolation method and a single crossover point
to obtain new offspring variable values bracketed by
the parents’ variable values (see Haupt and Haupt,
2004, for details). After mating, the new popula-
tion of chromosomes is ranked and the Nelite = 10
best chromosomes are categorised at elite chromo-
somes and are not allowed to mutate. Of the remain-

ing non-elite chromosomes, each has a mutation rate
µ = 0.1 probability of being mutated. After mutation
has taken place, the GA repeats the process for a total
of Niter = 200 iterations, after which the best solution
obtained is used for moving the tugs one step ahead
as per the RHC strategy presented above.

We chose these GA parameter settings by manu-
ally evaluating a number of test runs, where we were
able to find suitable settings that ensured satisfact-
ory run times for all RHGA configurations while at
the same time obtaining satisfactory minimisation of
cost functions. That is, only negligible improvements
were attainable from tuning the GA to other, often
more time-consuming settings, e.g., increasing the
population size or number of iterations.

Our choice of GA settings are summarised in
Table 2.

3.5 RHGA Configurations

The three cost functions f1, f2, and f3 are paramet-
erised by a distance power e and a safe region r,



Table 2: GA settings.

Parameters Settings

Population size Npop = 50
Chromosomes kept for mating Nkeep = 10
Elite chromosomes Nelite = 10
Mutation rate µ = 0.1
Number of iterations Niter = 200

whereas the evaluation heuristics h1 and h2 are para-
meterised by a safe region r, which in turn is a func-
tion of vp

max or vp
min for h1 or h2, respectively.

We decided to implement and evaluate 14 differ-
ent configurations of the cost functions for the RHGA
and evaluate each configuration using both the eval-
uation heuristics. In addition, we wanted to evaluate
a static strategy, in which tugs are stationary at base
stations and do not move until notified about a drift-
ing ship. For convenience in our data processing, we
have labelled the static strategy as configuration #0
and defined its configuration as f0, with e and r both
set to zero. For the same reason, we have set e = 0
for f3, where e is not applicable. Each configuration
can be thought of as a unique TFO algorithm. Indeed,
our approach generalises to the evaluation of any TFO
algorithm able to calculate tug fleet control decisions
based on the parameters, settings, and input scenarios
that we have described above.

The 15 configurations are summarised in Table 3.

Table 3: RHGA configurations.

Cost function fi Power e Safe region r #

0 0 0 1

1

1
0 2

50 3
100 4

2
0 5

50 6
100 7

2

1
0 8

1 50 9
100 10

2
0 11

50 12
100 13

3 0 50 14
100 15

4 RESULTS

We randomly generated Nsim = 1600 unique sim-
ulation scenarios and tested the performance of tug
fleet optimisation for each of the 15 RHGA configura-
tions given in Table 3 when faced with Np = {1, . . . ,6}
tugs to control, yielding a grand total of 144,000 sim-
ulations. For each configuration, that is, each combin-
ation of cost function fi, distance power e, and safe
region r, denoted as fi(e,r), the sample mean, stand-
ard deviation, coefficient of variance (relative stand-
ard deviation), standard error (standard deviation of
the sample mean), and relative standard error for the
evaluation heuristics h1 and h2 were calculated for
Np = {1, . . . ,6} tugs, respectively. Both heuristics
were evaluated at the end of each simulated scenario
at t = tf. In the sections below, the results of the
sample means as well as comparisons of the active
control configurations of the RHGA versus the static
strategy are our main concern and will be presen-
ted graphically, whereas the other statistics will be
presented briefly in text.

4.1 Evaluation Heuristic h1

The evaluation heuristic h1 is a measure of the number
of unsalvageable tankers. Figure 4 shows the max-
imum (worst performance) and minimum (best per-
formance) sample mean h̄1 of cost functions f1– f3
over all configurations (combinations of power e and
safe region r), as well as the static strategy, evaluated
for 1–6 tugs. Unsurprisingly, the size of the tug fleet

static
max(f1)
max(f2)
max(f3)
min(f1)
min(f2)
min(f3)

h 1

0

1

2

3

4

Number of tugs
1 2 3 4 5 6

Figure 4: Maximum and minimum mean h1 evaluated for
1–6 tugs and cost functions f1– f3 and the static strategy.



strongly affects h1. With a single tug, h̄1 was in the
range [4.15–4.87], and then decreased with the num-
ber of tugs to the range [0.034–0.30] for six tugs.

For all configurations with 1–3 tugs, the standard
deviation showed no trend and was in the range [0.99–
1.25], whereas it was decreasing with the number of
tugs for configurations with 4–6 tugs and ranged from
0.19 to 0.91. The standard error of the mean was in
the range [0.005–0.032] for all configurations, with
typically smaller values for smaller means. The rel-
ative standard error (found by dividing by the mean)
was small for all configurations, increased with num-
ber of tugs (and thus smaller means), and was in the
range [0.0051–0.13].

As expected, all RHGA configurations of f1– f3
outperform the static strategy for the same number of
tugs. In addition, when the RHGA is configured with
a tug fleet with one tug less than the static strategy,
the following observations are made: With a single
tug, no RHGA configuration is able to outperform
the static strategy with two tugs; with two tugs, the
best configurations of f2 and f3 outperform the static
strategy with three tugs; and with 3–5 tugs, all config-
urations of f2 and the best configuration of f3 outper-
form the static strategy with 4–6 tugs, respectively.

Comparing the RHGA configurations with respect
to the number of tugs, we observe the following: For
a single tug, f3 has a better respective minimum and
maximum performance than the other cost functions;
for two tugs, f2 and f3 have approximately equal
minimum and maximum performance; for 3–6 tugs,
f2 has a better minimum and maximum performance
than the other cost functions. Also, for any number of
tugs, the best configuration of f3 is with safe region
r = 100 and the worst is with r = 50. For any number
of tugs, the best configuration of f3 is not much worse
than that of f2 while the worst configuration of f3 is
clearly worse than that of both f1 and f2 for 4–6 tugs.

Finally, we note that when compared with f2, f1
has a similar trend and relationship between max-
imum and minimum h̄1 with increasing number of
tugs but consistently with worse performance.

4.1.1 Comparison with Static Strategy

Figure 5 shows the normalised mean of h1 for all con-
figurations of cost functions f1 (left), f2 (middle), and
f3 (right) evaluated for 1–6 tugs and normalised by di-
viding the results with those of the static strategy.

For both cost functions f1 and f2 and 1–3 tugs,
a power setting of e = 1 has better performance than
e = 2, whereas there is a slight overall performance
improvement for e = 2 for 4–6 tugs. The overall best
safe region setting is r = 50.

For f3, a safe region of r = 100 performs well,
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Figure 5: Mean h1 for cost functions f1 (left), f2 (middle),
and f3 (right), normalised by the static strategy.

whilst r = 50 performs badly, especially with increas-
ing number of tugs.

Finally, only f2 (all configurations) and f3 (r =
100) is able to steadily improve its normalised per-
formance with increasing number of tugs, reaching
an improvement of 73–88% compared to the static
strategy for any configuration with a tug fleet of six
tugs.

4.2 Evaluation Heuristic h2

Figure 6 shows the same results as that of Figure 4
but for the evaluation heuristic h2, which is a meas-
ure of the sum of squared distances to cross points of
unsalvageable tankers.

As for h1, the size of the tug fleet strongly affects
this evaluation heuristic. With a single tug, h̄2 was in
the range [8.5–9.7]·105, and then decreased with the
number of tugs to the range [3.7–9.5]·103 for six tugs.

Generally, for any configuration, the standard de-
viation decreased with the number of tugs, ranging
from 3.3 · 103 to 5.1 · 105. The standard error of the
mean was in the range from 82 to 9.3 ·103 for all con-
figurations, with typically smaller values for smaller
means. The relative standard error was small for all
configurations and in the range [0.0091–0.026].

Due to the large difference in magnitude of h̄2 (due
to the square term in the heuristic) depending on the
number of tugs, we have plotted h̄2 on a logarithmic
scale to enhance readability. The results are similar to
those for evaluation heuristic h1, with the same rela-
tionships between the various cost functions and con-
figurations. The exception is f3 when employed with
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Figure 6: Maximum and minimum mean h2 evaluated for
1–6 tugs and cost functions f1– f3 and the static strategy.

1–4 tugs, for which its relative performance compared
to the other cost functions is worse than when evalu-
ated with h1.

4.2.1 Comparison with Static Strategy

Figure 7 shows the same results as that of Figure 5 but
for the evaluation heuristic h2.
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Figure 7: Mean h2 for cost functions f1 (left), f2 (middle),
and f3 (right), normalised by the static strategy.

For both cost functions f1 and f2 and any number
of tugs, with the exception of a safe region of r = 50, a

squared power setting of e = 2 has better performance
than e = 1, especially for 4–6 tugs.

For f3, a safe region of r = 50 performs better for
1–2 tugs, whilst letting r = 100 is better for 3–6 tugs.

Finally, only f2 (all configurations except
f2(1,100)) is able to steadily improve its normal-
ised performance with an increasing number of tugs,
reaching an improvement of 65–69% compared to the
static strategy for any configuration with a tug fleet of
six tugs.

5 DISCUSSION

Both evaluation heuristics are able to quantify the
performance of TFO algorithms designed to solve the
TFO problem as defined in this paper. The small
standard error for both heuristics is obtained by em-
ploying a large number of simulation scenarios (total
1,600) and means that the uncertainty in the means of
both h1 and h2 is small. This is important in order to
reliably measure the performance of TFO algorithms.

The general effect of increasing the number of
oil tankers is that a static strategy will become in-
creasingly suitable, whereas a dynamic scheme such
as the RHGA configurations tested here will become
less important. Thus, it is very impressive that cost
function f2 is able to increase its performance relat-
ive to the static strategy as measured by both eval-
uation heuristics, even with five or six tugs, and for
all its configurations. The evaluation heuristics show
that the RHGA configured with cost function f2 has
the best overall performance, with most configura-
tions outperforming the other cost functions. The best
choice of safe region for f2 was r = 50, whereas the
best power setting was e = 1 for h1 and e = 2 for
h2, for for 1–3 or 1–4 tugs, respectively. With these
configurations, f2 was able to outperform the static
strategy even with one less tug.

Cost function f3 also performs well if r = 100,
and is comparable with f2 when evaluated by h1 and
to a lesser extent when evaluated by h2. However, if
r = 50, f3 is the worst of all the RHGA configurations.
The similarities between cost function f3 and h1 in
measuring the number of tankers are salvageable or
not is probably what makes f3 perform better for h1
than for h2.

Cost function f1 is similar to but consistently
worse than f2 and and the best configuration of f3 and
should be rejected. We propose that this is a direct
result of its flaw that we have documented previously
(Bye and Schaathun, 2014).



5.1 Future Work

The main hurdle before our RHGA can be used in
real-world systems is to test and verify it under real-
istic conditions. This includes considering historical
data of oil tanker traffic, realistic estimates of the vari-
able maximum tug speeds attainable under various
conditions, realistic drift trajectories and cross point
distributions, downtime of tugs due to secondary mis-
sions or change of crew, and so on. It may also be
necessary to extend the algorithm to 2D, in particu-
lar high risk scenarios where oil tankers enter or leave
port and therefore are much closer to land than when
sailing along the TSS corridor. Although challenging,
we do welcome the prospect of TFO algorithms be-
ing adopted as decision-support tools for VTS centres
around the world.
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