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Abstract—The Deletion-Insertion Correcting Code construc-
tion proposed by Davey and MacKay consists of an inner code
that recovers synchronization and an outer code that provides
substitution error protection. The inner code uses low-weight
codewords which are added (modulo two) to a pilot sequence.
The receiver is able to synchronise on the pilot sequence in spite
of the changes introduced by the added codeword.

The original bit-level formulation of the inner decoder assumes
that all bits in the sparse codebook are identically and indepen-
dently distributed. Not only is this assumption inaccurate, but
it also prevents the use of soft a-priori input to the decoder.
We propose an alternative symbol-level inner decoding algorithm
that takes the actual codebook into account. Simulation results
show that the proposed algorithm has an improved performance
with only a small penalty in complexity, and it allows other
improvements using inner codes with larger minimum distance.

Index Terms—deletion-insertion correcting codes, turbo codes,
non-binary codes

I. INTRODUCTION

The Davey-MacKay (DM) construction [1] is a Deletion-

Insertion Correcting Code (DICC) scheme for the Binary

Substitution, Insertion, and Deletion (BSID) channel. In ad-

dition to bit substitutions, this channel model allows for

the possibility of deletion or unbounded insertions at every

timestep. While such channel models have not led to practical

solutions for most conventional communication channels, they

are receiving increasing interest in digital watermarking (e.g.

[2]).

Deletion/Insertion errors in watermarking stem from two

causes. Firstly, they are caused by malicious attacks through

local geometric distortions. In image watermarking both the

jitter and the celebrated StirMark [3] attacks are examples of

this. The other common cause is errors in the demodulator.

The embedded information is often linked to feature points

in the media signal. Noise may change the strength of the

feature points, so that the demodulator loses feature points

(deletion) or introduces false feature points (insertion). One

recent example of this is [4].

The inner code in the DM construction recovers synchro-

nization through a pilot sequence. Information is transmitted

by modulating it on the pilot sequence in the form of sparse

substitutions. The inner decoder is able to resynchronise in

spite of these substitutions. A non-binary outer code is used

to correct substitution errors. In practical terms the information

is encoded first by the outer code. Each symbol of the resulting

codeword is encoded using a non-linear binary code (the inner

code) with low-weight codewords, which is added (modulo 2)

to the pilot sequence.

The original work used non-binary LDPC codes as outer

codes. On poor channels, requiring low rate codes, turbo codes

have been shown to have better error performance [5]. We have

also previously demonstrated that improvements can be made

by fine-tuning the codebook for the inner code [6].

In the original work, the pilot sequence is decoded while

treating the modulated information as random, independent

substitutions. Clearly, the structure of the inner code means

that the bits are dependent, making the original algorithm

suboptimal. We propose an alternative, symbol-level decoder,

where the pilot sequence is tracked one q-ary symbol at a time

taking its probability distribution into account.

By using more information about the underlying code, the

new algorithm is theoretically more accurate. The improve-

ment is confirmed in simulations, and especially for high

code rates, these improvements are significant. The asymptotic

complexity is the same as for the original algorithm, and the

actual run time in our simulations is only 0%–20% slower.

Furthermore, allowing for soft input, the new algorithm can

support iterative decoding, although this is left as an open

problem where issues of speed and numerical precision have

to be resolved. Preliminary simulations with non-optimised

iteration show slight, but encouraging improvements of the

frame error rate.

We will start with descriptions of the model and the original

algorithm in Section II. The new algorithm is defined in

Section III and evaluated in Section IV. The final section

summarises and concludes.

II. BACKGROUND

A. The channel

We define the channel in terms of the transition diagram

in Figure 1. At each time i, one bit is input to the channel.

One of four events may happen: insertion with probability Pi

where a random bit is output; deletion with probability Pd

where the input is discarded; or transmission with probability

1−Pd−Pi where the input bit is output with probability 1−Ps

or its negation with probability Ps. In the case of deletion or

transmission, we proceed to time i+ 1.

A strict terminology is necessary, so we stress that time i
is the point where i bits have been input to the channel, and
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Figure 1. Event transition diagram for the BSID channel

the last event was not an insertion. It necessarily follows that

time i = 0 is the origin, i.e. before transmission starts.

The output of the channel is defined in terms of the time-

step, or the period from the input of one bit to the next. During

each Time-step i, the channel takes one input bit, and produces

ηi output bits; this corresponds to the transition from Time i−1
to Time i in Figure 1.

B. The inner code

The inner encoder operates on one q-ary symbol at a time.

A sparse codebook maps each possible symbol 0 ≤ d < q to

a low-weight binary codeword λ(d) of length n. Note that q
need not be a power of two.

On the other hand, the decoder has to address the fact that

a block of N q-ary symbols has been transmitted. We define a

block as the sequence of N symbols dι, 0 ≤ ι < N transmitted

during one use of the system. The block would normally be

encoded using a q-ary error-correcting code, to protect against

substitution errors from the inner decoder.

The model assumes that synchronisation is guaranteed be-

fore and after each block. In a watermarking application, for

instance, a block would typically represent the symbols em-

bedded in one file. In other applications, block-level synchro-

nisation may be achieved using conventional pilot sequences.

With a length n inner code and a length N outer code, we

require a binary pilot sequence w of length nN . Davey and

MacKay recommended using a random sequence. The block

is encoded symbol by symbol using the sparse codebook, to

give another length nN sequence which is added modulo two

to the pilot sequence. Note that we refer to a length N q-ary

sequence as a block, and the corresponding binary sequence

of length nN as a frame.

We have three levels of information units—bit, symbol, and

block. To avoid confusion, we define the symbol-level timing

as follows. Slot ι consists of the time-steps corresponding to

the transmission of symbol dι; that is, to the period from time

nι to (n+1)ι. Slot boundary ι is the point where ι slots have

been transmitted; that is, the point at the end of slot ι− 1 and

the beginning of slot ι. This corresponds to time nι, and it

necessarily follows that slot boundary ι = 0 corresponds to

the fixed temporal origin.

Each symbol dι is represented by the sum of the

corresponding segment from the pilot sequence with the

sparse symbol representing dι. For any word or vector

z = (z0, z1, z2, . . . , zm), we let z|ba denote the subword

(za, za+1, . . . , zb−1). Note that, in the case of a transmitted

frame z, the bits transmitted between Time a and Time b form

the word z|ba.

At bit level, the transmitted frame is the sequence of τ
bits (ti), 0 ≤ i < τ representing the block of N symbols.

Since each symbol is represented by n bits, the frame consists

of τ = nN bits. Thus the transmission of one τ -bit frame

lasts from time 0 to time τ , and spans τ time-steps numbered

0 . . . τ − 1. Symbol dι is represented by the segment tι =
tnι,n(ι+1), which is equal to wι ⊕ λ(dι).

Similarly, the received frame is the sequence of ρ bits (ri),
0 ≤ i < ρ corresponding to the transmitted frame. It is

assumed that the frame boundaries are known.

The amount of desynchronisation at a particular point in

time is defined as the drift. Formally, the drift ςi is the differ-

ence between the number of transmitted bits and the number

of received bits up to time i. That is, ςi =
∑i−1

k=0(ηi−1). The

state of the decoder is used to represent the drift.

C. The Bit-Level Algorithm

Davey and MacKay used a forward/background algorithm

for inner decoding. It is easiest to understand the algorithm

if we start with the last step. The output is the likelihood

of each possible transmitted symbol, for each slot, given the

transmitted sequence, written as follows:

L(dι) =
∑

x1,x2

F (nι, x1)

· Pr
{

r|
n(ι+1)+x2

nι+x1
| dι

}

·B(n(ι+ 1), x2),

(1)

where

F (i, x1) = Pr
{

r|nι+x1

0 , ςi = x1

}

(2)

B(i, x2) = Pr
{

r|ρ
n(ι+1)+x2

| ςi = x2

}

(3)

The summation indices x1 and x2 refer to the state of

the system respectively before and after the transmission of

symbol dι. The state of the system is the (possibly negative)

difference between the number of received and the number of

transmitted bits.

The two terms F (i, x) and B(i, x) are called the forward

and backward metrics, and are calculated by (forward and

backward) recursion on the time index i. Again, x refers to

the state of the system at time i. A fundamental component

of this calculation is the conditional probability Pr {r|t} of a

received sequence r, given a transmitted bit t, which can be

calculated using the following lemma (formula derived in [1]).

Lemma 1 The channel-receiver probability function can be

calculated as follows:

R(r, t) = Pr {r | t}

=
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if µ ≥ 0, rµ = t,

where Pt = (1 − Pi − Pd) is the probability of a correct

transmission.



The recursive formulæ are given as follows:

F (i, x) =
∑

ς

F (i− 1, ς)R(r|i+x
i−1+ς , ti−1), (4)

B(i, x) =
∑

ς

B(i+ 1, ς)R(r|i+1+ς
i+x , ti), (5)

for 1 ≤ i < τ , and

F (0, x) =

{

1 if x = 0

0 otherwise
(6)

B(τ, x) =

{

1 if x = ρ− τ

0 otherwise
(7)

The last factor Pr
{

r|
n(ι+1)+x2

nι+x1
| dι

}

in the calculation of

L(dι) is the probability of receiving a particular sequence

r as the result of transmitting a single syumbol dι. This is

calculated by calculating the forward metrics over a single

slot (as opposed to the entire frame):

Pr {r|ν0 | t|n0} = Pr {r|ν0 , ςn = ν − n} ,

where t is the transmitted bits resulting from the watermark

sequence from index nι+ x1 to n(ι+ 1) + x2 and the sparse

encoding of dι, and ν is the number of bits received, given by

ν = n+ x2 − x1.

III. SYMBOL-LEVEL ALGORITHM

As an alternative to the decoding algorithm proposed by

Davey, we propose an algorithm where the forward-backward

algorithm is applied at q-ary symbol boundaries. The state

machine is still defined at bit level, as this depends uniquely on

the BSID channel model. The forward and backward metrics,

on the other hand, recurse on slot indices instead of bit indices.

Consider again the reception of a single frame of ρ bits (ri),
0 ≤ i < ρ corresponding to a transmitted frame of τ bits (ti),
0 ≤ i < τ .

A. Implementation Details

As in [1], we define two implementation parameters that

determine the decoding complexity: the limit on successive

insertions I and the limit on considered drift xmax.

The path complexity is limited by the value I , which

specifies the maximum number of (successive) insertion events

in a single time-step. In other words, once I insertions occur in

a particular time-step, the next event must be a transmission or

a deletion. This also means that the difference in drift between

time i and i+1 is limited by −1 ≤ ςi+1−ςi ≤ I , representing

a deletion and no insertions at one end, and a transmission and

I insertions at the other. The choice of I depends on Pi and

on the sequence length being considered. Davey claims that

a fixed value of I = 2 causes only minimal degradation in

decoding performance; we stick to that value in this paper.

The memory complexity is limited by the value xmax, which

specifies the range of legal drift values at any time i as

−xmax ≤ ςi ≤ xmax. The choice of xmax depends on Pi and

Pd and on the sequence length being considered; as in [1]

we consider channels where Pi = Pd. For the sake of clarity,

we use the term xmax when dealing with the whole frame; we

define δxmax as the corresponding term when dealing with the

bits in a single slot.

B. Computation of Symbol-level Forward Metrics

Definition 1 (Symbol-level Forward Metric) The symbol-

level forward metric α(ι, x) at slot boundary ι and state x is

defined as the joint probability

α(ι, x) = Pr
{

r|nι+x
0 , ςnι = x

}

. (8)

In other words, the symbol-level forward metric is the prob-

ability that the state at slot boundary ι is x, and that the

first nι+x bits received correspond to the bits emitted by the

channel up to that time.

The symbol-level forward metric is computed from the

receiver likelihoods using the recursion:

α(ι, x2) =
∑

x1,dι−1

α(ι− 1, x1) Pr
{

r|nι+x2

n(ι−1)+x1

, tι−1

}

(9)

for 1 ≤ ι < N . This represents the summation over all

possible prior states and all possible symbols transmitted in

the previous slot:

Pr
{

r|nι+x2

0 , ςnι = x2

}

=
∑

x1,dι−1





Pr
{

r|
n(ι−1)+x1

0 , ςn(ι−1) = x1

}

× Pr
{

r|nι+x2

n(ι−1)+x1

, tι−1

}





(10)

Initial conditions for the forward metrics are given by:

α(0, x) =

{

1 if x = 0

0 otherwise
(11)

Observe that unlike Davey’s bit-level algorithm, there is

no need to average over changes due to the sparse vec-

tor. The problem of determining the receiver likelihood

Pr
{

r|nι+x2

n(ι−1)+x1

, tι−1

}

is calculated as for the bit-level al-

gorithm.

C. Computation of Symbol-level Backward Metrics

Definition 2 (Symbol-level Backward Metric) The symbol-

level backward metric β(ι, x) at slot boundary ι and state x
is defined as the conditional probability

β(ι, x) = Pr
{

r|ρnι+x | ςnι = x
}

. (12)

In other words, the symbol-level backward metric is the

probability that the channel would emit the sequence r|ρnι+x

from slot ι up to the end of the frame, given that the system

is in state x at slot boundary ι.

The symbol-level backward metric is computed in a similar

way to the forward metric, using the recursion:

β(ι, x1) =
∑

x2,dι

β(ι+ 1, x2) Pr
{

r|
n(ι+1)+x2

nι+x1
, tι

}

(13)



for N > ι ≥ 1. This represents the summation over all

possible posterior states and all possible symbols transmitted

in the next slot:

Pr
{

r|ρnι+x1
| ςnι = x1

}

=
∑

x2,dι





Pr
{

r|ρ
n(ι+1)+x2

| ςn(ι+1) = x2

}

× Pr
{

r|
n(ι+1)+x2

nι+x1
, tι

}





(14)

Initial conditions for the backward metrics are given by:

β(N, x) =

{

1 if x = ρ− τ

0 otherwise
(15)

As in the computation of the symbol-level forward metrics,

there is no need to average over changes due to the sparse

vector.

D. Decoder Output

The decoder output for the symbol-level algorithm is com-

puted by replacing the forward and backward metrics in Eq.

(1), using the new symbol-level quantities α(·) and β(·):

L(dι) =
∑

x1,x2

[

α(ι, x1)β(ι+ 1, x2)

·Pr
{

r|
n(ι+1)+x2

nι+x1
| dι

}

]

.

IV. RESULTS

To investigate the performance of the symbol-level decoder,

we consider a number of constructions, at different information

rates. Firstly, we consider the rate 1/10 codes simulated in [6]

using turbo outer codes. We have also reimplemented Davey’s

original Codes F (rate 1
2 ) and D (rate 0.71) using LDPC codes.

The channels is a BSID channel with Pd = Pi =: p
and Ps = 0. Simulated results have an 80% confidence

interval of ±20%. Path truncation is not performed, so that

results are independent of any effect it may have on decoding

performance.

A. Rate 1/10

We compare results for two systems with a frame size of

approximately 6 000 channel bits, one using the (7, 8) inner

code and the other using a (8, 16) inner code with a balanced

codebook.

The outer codes are unpunctured turbo codes of rate R =
1/5. For q = 8 we use an outer code in GF (8) with an

interleaver size of N = 171. Its constituent codes are of

memory order ν = 2 (64-state) with feedback polynomial

1+D+α4D2 and feed-forward polynomials 1+αD+α4D2

and 1 + α5D + α4D2, where α is a root of x3 + x + 1.

For q = 16 the outer code is in GF (16) with N = 150;

constituent codes are of memory order ν = 2 (256-state)

with feedback polynomial 1 + D + α4D2 and feed-forward

polynomials 1+αD+α4D2 and 1+α2D+α9D2, where α
is a root of x4 +x+1. Both codes use unterminated trellises,

and an S-random interleaver [7] of block size N and spread

S = 9, 10 for N = 150, 171 respectively.
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Figure 2. Performance of DM-turbo codes with symbol-level decoder
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Figure 3. Error performance of rate-1/2 DM-LDPC codes with symbol-level
inner decoder, and comparison with bit-level decoder and published results.

We can see from the frame-error rate (FER) results in

Figure 2 that for the same code, the decoding performance im-

proves when using symbol-level inner decoding. It is notable

that the symbol-level decoder results in a greater improvement

in the 4/8 code than the optimally-spread 3/7 code. This

makes sense because the approximation made by the original

algorithm assuming independent bits is more severe when the

inner code has higher density (i.e. more one-bits per column

in the codebook).

B. Rate 1
2 and 0.71

Figure 3 shows simulations for Davey’s Code F, with

a (6, 16) inner code and rate 500/667 LDPC outer code.

Similarly, Figure 4 shows Davey’s Code D, with a (5, 16)
inner code and rate 8/9 LDPC outer code. Additionally, we

have shown Ratzer’s results [8] for marker codes at similar

rates.
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Figure 4. Error performance of high rate (R = 0.71) DM-LDPC codes
with symbol-level inner decoder, and comparison with bit-level decoder and
published results.

Firstly, we observe that the benefit of symbol-level decoding

which was only a slight improvement at rate 1/10 becomes

very significant at higher rates.

We have also shown results with alternative, non-sparse in-

ner codes. For Code F, we have a [6, 4, 2] punctured Hamming

code, and for Code D, a [5, 4, 2] parity check code. These

codes cause too many substitutions on the pilot sequence

to work with the bit-level decoder. They become decodable

because the symbol-level decoder takes the actual codewords

into account, and then they perform better because of the

increased minimum distance.

V. CONCLUSIONS

We have proposed a symbol-level decoding algorithm for

the Davey-MacKay construction that results in improved per-

formance at a small cost in complexity. The improvement is

particularly significant at high code rates. With the proposed

algorithm, the Davey-MacKay construction also outperforms

Ratzer’s marker codes with non-iterative decoding, although

not marker codes with iterative decoding.

An important aspect of our result is that the disadvantage in

decoding speed is negligible. It would have been reasonable

to expect a significant increase in computational cost, which

may have discouraged this research in the past. However, this

is not the case. It can be shown that the asymptotic com-

plexity is the same as for Davey’s bit-level decoder, namely

O(Nnqxmaxδ
2
xmaxI). Empirical running times show a modest

0%–20% increase in decoding time per block, depending on

code parameters and channel conditions.

Iterative decoding remains an open problem. The symbol-

level decoder allows soft a priori input, and is thereby

prepared for iteration. Preliminary experiments show a slight,

but encouraging improvement in frame error rates. However,

there are issues of numerical precision and computational

optimisation which must be solved before a reliable iterative

decoder can be created. Also for Ratzer’s Marker Codes,

iterative decoding is not fully understood. The optimal Marker

Code with non-iterative decoding is not optimal with iteration,

and the reason for this is not known.

This decoding algorithm does not assume that all bits in the

sparse codebook have the same distribution, removing earlier

restrictions on inner code construction, and we demonstrated

that this can be exploited by using inner codes with larger

minimum distance. The effect of path truncation (as suggested

by Davey) on decoding performance and complexity still needs

to be investigated. At low code rates, preliminary results

indicate that only marginal speed gain is possible without

a significant loss in decoding performance. However, path

truncation still seems to have potential at high code rates.

Optimising the truncation thresholds for particular channel

parameters remains an open question.
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