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Abstract - The theory of separating systems has been applied in different
areas of science and technology such as automata synthesis, technical diag-
nosis and authenticating ownership claims. Constructions of (2,2)-separating
systems derived from error-correcting codes are given, together with bounds
on their parameters based on distance considerations.

Index Terms- Separating systems, error-correcting codes, copyright pro-
tection, watermarking.

1 Introduction

The case of (2, 2)-separation was introduced by Sagalovich in the context
of automata: two such systems transiting simultaneously from state a to a′

and from b to b′ respectively should be forbidden to pass through a common
intermediate state. He has written a long series of papers since the sixties, a
fairly recent survey can be found in [10]. States are simply binary n-tuples
and only shortest paths are allowed during transitions; in other words, the
only ‘moves’ permitted while transiting from a to a′ are complementing the
d(a, a′) bits where a and a′ differ (one at a time). Clearly if the separation
property holds, no two such minimal-length paths between a and a′, and b
and b′ will intersect.

The design of self-checking asynchronous network has been a challeng-
ing problem. Friedman et al. [6] have shown that some of the unicode
single-transition-time asynchronous state assignments correspond to (2,2)-
separating systems.

Separating partition systems have been studied by Friedman and Komlós
[7]. The authors used information theory to derive nonexistence bounds for
separating partition systems in two special cases - systems of perfect hash
functions and (i, j)-separating systems.
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The problem of perfect hash functions was generalized by Körner and
Symonyi [8]. They improve on earlier results for (i, j)-separating systems
of partitions and give new treatment of the problem about the minimum
number of partitions in any (i, j)-separating partition systems for a set of
given size.

The digitalization of our world expanded our concept of watermark to
include immaterial, digital impressions for use in authenticating ownership
claims and protecting proprietary interests. A digital watermark is a signal
or pattern inserted into a digital “document” (e.g. text, graphics, multimedia
presentations). Digital fingerprints are characteristics of an object in a digital
format that tend to distinguish it from other similar objects. Codes were
introduced in [1] (see also [11]) as a method of “digital fingerprinting” which
prevents a coalition of a given size from forging a copy with no member of
the coalition being caught.

The outline of the paper is as follows. Definitions and basic results are
presented in Section 2. We then derive sufficient conditions on the code
distances to insure separation . In Section 4, we use concatenation to provide
good constructions of linear separating families over small alphabets. Finally,
we present asymptotic results and a table of rates.

2 Definitions and basic results

We use the notation of [11] for fingerprinting issues and of [9] for codes and
Hadamard matrices.

For any positive real number x we shall denote by bxc its integer part and
by dxe the smallest integer at least equal to x. A set Γ ⊆ GF (q)n is called an
(n,M, d)-code if |Γ| = M and the minimum Hamming distance between two
of its elements (codewords) is d. Suppose C ⊆ Γ. For any position i define
the projection Pi(C) = {ai|a ∈ C}, and the feasible set of C by

F (C) = {x ∈ GF (q)n : ∀i, xi ∈ Pi(C)}.

The feasible set F (C) represents the set of all possible n-tuples (descendants)
that could be produced by the coalition C by comparing the codewords they
jointly hold. Observe that C ⊆ F (C) for all C, and F (C) = C iff |C| = 1.

We denote by C[n, k, d1]q (or simply C[n, k]q when d1 is irrelevant) a linear
code of length n, dimension k over GF (q) and minimum distance d1. By m1

we denote the maximum distance of a code. In the nonlinear case, (n,M)q
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is a code of length n with M codewords. The subscript is omitted in the
binary case. The rate of C is defined as R(C) = R = n−1 logq |C|. We refer
to [9] for all undefined notions on codes.

Definition 1 We say that a code C is (t, t′)-separating if, for any pair (T, T ′)
of disjoint subsets of C where |T | = t and |T ′| = t′, the feasible sets are
disjoint, i.e. F (T ) ∩ F (T ′) = ∅.

In earlier works on watermarking, (t, t)-separating codes have been called
t-partially identifying codes [5] or t-secure frameproof [12, 11]. The current
terminology is older though [10].

Definition 2 A (t, t′)-configuration is a pair (T, T ′) of disjoint vector sets of
sizes t and t′ respectively. We say that (T, T ′) is separated if F (T )∩F (T ′) =
∅, and otherwise it is non-separated. A (t, t′)-NSC is a non-separated (t, t′)-
configuration.

A code is (t, t′)-separating if and only if it contains no (t, t′)-NSC. Obvi-
ously, if C is (t, t′)-separating, then it is also (t′, t)-separating, and (t′′′, t′′)-
separating for all t′′′ ≤ t and all t′′ ≤ t′.

3 Bounds based on distances

Proposition 1 If C is a linear, binary (2, 2)-separating code of dimension
k, then m1 < n− 2(k − 2).

Proof: If k ≤ 1, the result is trivial. For k = 2, it only says that the all-one
codeword 1 cannot be in the code C, lest (0,1; c, c + 1) form a (2, 2)-NSC
for c ∈ C\{0,1}.

We then turn to the case k ≥ 3. We shall prove that if n − m1 ≤
2(k − 2), then C cannot be (2, 2)-separating. Consider a codeword c of
maximum weight. Since the code is linear, for every set of k − 2 coordinate
positions, there exist at least three non-zero codewords which are zero on
these positions, and thus at least one which is not c. In particular, there is a
non-zero codeword a which is zero on half the positions not in the support of
c, and one b which is zero on the other half. Thus (0, c; a,b) is a (2, 2)-NSC.
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Let c′, c, a,b be distinct vectors such that (c′, c; a,b) is a (2, 2)-NSC.
From this assumption, we will derive some statements on the minimum and
maximum weights of any code which is not (2, 2)-separating. This will give
a sufficient condition for a code to be (2, 2)-separating in Theorem 1. The
binary linear case of Theorem 1 has previously been stated by Sagalovich
[10]. We now make some preliminary observations and then prove a lemma.

Remark 1 If π : GF (q)n → GF (q)n is an automorphism, then (T, T ′) is a
(t, t′)-NSC if and only if (π(T ), π(T ′)) is a (t, t′)-NSC.

Remark 2 If (T, T ′) is a (t, t′)-NSC, then so is (T + c, T ′ + c) for any
c ∈ GF (q)n. If T + c, T ′ + c ⊂ C, then T, T ′ ⊂ C ′ for some code C ′

equivalent to C. If C is linear and T, T ′ ⊂ C, then T + c, T ′ + c ⊂ C.

By Remark 2, we can assume that c′ = 0.
We write

c = (c1, c2, . . . , cn),
a = (a1, a2, . . . , an),
b = (b1, b2, . . . , bn).

Since (0, c; a,b) is a (2, 2)-NSC, there is no coordinate i such that both
ai 6∈ {0, ci} and bi 6∈ {0, ci}.

We consider the sum

Σ := d(0, a) + d(0,b) + d(c, a) + d(c,b)
= w(a) + w(b) + w(a− c) + w(b− c).

We have trivially that
4d1 ≤ Σ ≤ 4m1.

Consider now the matrix with rows 0, c, a,b. Let xi be the i-th column
in this matrix. We assume, with no loss of generality, that c=(1,..1,0,...0);
this is clearly achievable by permuting columns and multiplying columnwise
by the appropriate non zero element. Then, we are left with four main types
of columns:

Type 0 : xi = (0, 0, 0, 0),
Type I : xi ∈ {(0, 0, 0, α), (0, 0, α, 0)}, α 6= 0,
Type IIa : xi ∈ {(0, 1, 0, 0), (0, 1, 1, 1)},
Type IIb : xi ∈ {(0, 1, 0, 1), (0, 1, 1, 0)},
Type III : xi ∈ {(0, 1, 0, β), (0, 1, β, 0), (0, 1, 1, β), (0, 1, β, 1)}, β 6∈ {0, 1}.
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No other possibility exists because the rows form a (2, 2)-NSC. We have
now that

Σ =
n∑

i=1

σ(xi),

where σ(xi) is 0 for Type 0, 2 for Types I and II, and 3 for Type III. Let vX
denote the number of columns of Type X. Then we get

n = v0 + vI + vII + vIII, (1)

Σ = 2vI + 2vII + 3vIII. (2)

Lemma 1 If (0, c; a,b) is a (2, 2)-NSC, then

Σ = w(c) + w(a− b) + w(a + b− c).

Proof: We have trivially that

n− w(c) = v0 + vI . (3)

Define two vectors

y = (y1, y2, . . . , yn) := a + b− c,
z = (z1, z2, . . . , zn) := a− b.

We have that

xi of Type 0 ⇒ yi = 0 ∧ zi = 0,
xi of Type I ⇒ yi = α ∧ zi = ±α,
xi of Type IIa ⇒ yi = ±α ∧ zi = 0,
xi of Type IIb ⇒ yi = 0 ∧ zi = ±α,
xi of Type III ⇒ yi 6= 0 ∧ zi 6= 0.

This gives

n− w(a + b− c) = n− w(y) = v0 + vIIb,
n− w(a− b) = n− w(z) = v0 + vIIa.

By adding together the two equations above as well as (3), we get

3n− (w(c) + w(a− b) + w(a + b− c))
= 3v0 + vIIa + vIIb + vI.
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From (2) and (1) we get that

Σ = 3n− (3v0 + vIIa + vIIb + vI)
= w(c) + w(a− b) + w(a + b− c),

as required.
We observe that d(a,b) = w(a − b) and d(0, c) = w(c) are distances in

the code; hence they are bounded by m1. If C is linear, then w(a + b − c)
is also a distance in the code and is thus bounded by m1. If C is non-linear,
we still have w(a + b− c) ≤ n. This gives directly the following theorem.

Theorem 1 If a code satisfies 4d1 > 2m1 + n, or if 4d1 > 3m1 and it is
linear, then it is (2, 2)-separating.

Example 1 Take a linear projective code over GF (p2) [2] with length

n =
(pk1 − (−1)k1)(pk1−1 − (−1)k1−1)

p2 − 1
,

dimension k1 and weights w1 = p2k1−3, w2 = p2k1−3 + (−p)k1−2.
In the case p = 2 for k1 = 4 it gives a [45, 4, 32]4 code, which is (2, 2)-

separating since m1 = w2 = 39 and it satisfies 4d1 > 3 = m1.

Example 2 A three-weight code over GF (p) is given in [2] with length

n = p+ 1 + p2(pk1−1 − (−1)k1−1)(pk1−2 − (−1)k1−2)/(p− 1),

dimension k = 2k1 and weights w1 = p2k1−2 − (−p)k1 − (−p)k1−1, w2 =
p2k1−2, w3 = p2k1−2 − (−p)k1.

In the binary case for k = 6 it gives a [39, 6, 20] code, which is (2, 2)-
separating since m1 = w3 = 24 and it satisfies 4d1 > 3m1.

Corollary 1 All linear, equidistant codes are (2, 2)-separating. A non-linear,
equidistant code is (2, 2)-separating if 2d1 > n.

The non-linear case of the corollary was proved in [5] by other methods. Note
that it is tight:

C = {(1000), (0100), (0010), (0001)}

is an equidistant (4, 4) code with distance 2, but not separating. The linear
case of the theorem is also tight, as the following example shows.
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Example 3 From the proposition we get that if (0, c; a,b) is a binary (2, 2)-
NSC and 4d1 = 3m1, then

w(c) = w(a− b) = w(a + b− c) = m1 = 4l,
w(a) = w(b) = w(a− c) = w(b− c) = d1 = 3l.

It turns out that the only possible (2, 2)-NSC is the following, or replications
thereof:

0 = 000000
c = 111100
a = 110010
b = 101001.

Note that the linear code 〈a,b, c〉 has also d1 = 3 and m1 = 4.

By m2 we denote the maximum support size of the union of two code-
words.

Proposition 2 If C is binary, linear and 2d1 > m2, then it is (2, 2)-separating.

Proof: Let (0, c; a,b) be a (2, 2)-NSC. We consider first the case where a, b,
and c are linearly independent. Then a + b, a + b + c, and c are the three
non-zero codewords in some 2-dimensional subcode D. Thus we get that

w(c) + w(a− b) + w(a + b− c) = 2w(a + b, c) ≤ 2m2, (4)

and by Lemma 1 that

4d1 ≤ Σ = w(c) + w(a− b) + w(a + b− c) ≤ 2m2. (5)

If a, b, and c are linearly dependent, then a + b + c = 0, and (4) becomes

w(c) + w(a− b) + w(a + b− c) ≤ 2m1,

which is stronger than (5).
It is easy to show thatm2 ≤ b3m1/2c, which is a maximum support weight

analogue of the Griesmer bound. If this bound is not met with equality, then
the above result is stronger than that of Theorem 1.
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4 Concatenation

The ternary construction we now introduce employs three ingredient codes
and applies twice the classical concatenation method, using the following
easy result.

Proposition 3 [4] If Γ1 is a (t, t′)-separating, M ′-ary (n1,M) code and Γ2 a
(t, t′)-separating, q-ary, (n2,M

′) code, then the concatenated code Γ := Γ2◦Γ1

is a (t, t′)-separating (n1n2,M)q code.

The first seed is the remarkable [4, 2, 3]3 tetracode T , defined by the
generator matrix [

1110
0121

]
Both T and R1, the [9, 3, 7]32 Reed-Solomon code, are (2, 2)-separating

by Theorem 1.
The concatenated code T ◦ R1 has parameters [36, 6]3, and is (2, 2)-

separating by Proposition 3. In order to produce infinite families of sep-
arating codes, we need the following constructive result from Tsfasman [13].

Proposition 4 For any α > 0 there is an infinite family of codes U(N) with
parameters [N,NR,Nδ]q for N ≥ N0(α) and

R + δ ≥ 1− (
√
q − 1)−1 − α.

We should note that the rate of U(N) is interesting only for large q, but T ◦R1

allows for concatenation with U(N) over GF (36), which is acceptable. Thus,
consider the family of [N,K,D = d3N/4e+ 1]36 codes U(N), which has rate
R′ ≈ 1/4 − (33 − 1)−1 = 11/52. The concatenated code T ◦ R1 ◦ U(N)
gives an infinite family of linear, ternary (2, 2)-separating and codes with
rate R′/6 ≈ 0.0352.

Example 4 We sketch a construction with a few other values of q. As in
the ternary case, we concatenate three codes to build the infinite family. Each
one has d/n > 3/4 and thus is again (2, 2)-separating by Theorem 1. The
first two are Reed-Solomon codes or their extensions; the last one is a U(N)
of length N and distance d3N/4e+ 1.

For q = 4, take successively:
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1. C1[5, 2, 4]4;

2. C2[17, 5, 13]42, getting C1 ◦ C2[85, 10]4;

3. U(N)[N,K,D] = d3N/4e + 1]410 with rate approximately 1/4 − (45 −
1)−1 ≈ 1/4.

The final outcome is an infinite constructive family of linear quaternary
(2, 2)-separating codes with rate approximately 1/34 ≈ 0.029.

For q = 5, C1[5, 2, 4]5, C2[25, 7, 19]52, with overall rate 14/500; for q = 7,
C1[7, 2, 6]7, C2[49, 13, 37]72, with overall rate 13/686; for q = 8, C1[9, 3, 7]8,
C2[65, 17, 49]82, with overall rate 17/780.

All these results are summarized in Table 1.

5 Non-constructive bounds

Below we present existence proofs of linear separating codes over different
fields. The first lemma is fairly well-known, and can be found in [9].

Lemma 2 Asymptotically, for almost all linear codes, the number of code-
words of weight i, Ai, satisfies

Ai =

(
n
i

)
(q − 1)i

qn(1−R)
≈ enH(i/n)ei ln(q−1)

en(1−R) ln q
,

where H is the natural entropy function and R = k/n is the rate.

Since we are dealing with the asymptotical case, we normalize by setting
i = nω, and we define the function f(ω,R, q) by

Aωn = enf(ω,R,q).

From Lemma 2, we get

f(ω,R, q) = H(ω) + ω ln(q − 1)− (1−R) ln q. (6)

Note that, for a given Ai, there are two solutions for i. Setting Ai ≈ 1, the
two solutions will be the minimum and the maximum weights. These are of
course also the zeroes of f .
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Let δ = d1/n and µ = m1/n be respectively the minimum and maximum
normalized weights. Because µ and δ are the zeroes of f , we get

H(δ) + δ ln(q − 1) = H(µ) + µ ln(q − 1),

or

(δ − µ) ln(q − 1) = δ ln δ + (1− δ) ln(1− δ)
− µ lnµ− (1− µ) ln(1− µ).

(7)

Lemma 3 (Varshamov-Gilbert) For almost all linear codes, the rate and
the normalized minimum distance are related by the following equation

H(δ) + δ ln(q − 1) = (1−R) ln q.

Proof: This follows from equating f(ω,R, q) = 0 as in (6).

We know from Theorem 1 that if δ > 3/4, then the code is (2, 2)-
separating. Hence we can, by substituting δ = 3/4 in the Varshamov-Gilbert
equation, get rates for which almost any code is (2, 2)-separating asymptoti-
cally. The rates such obtained are presented under “Technique I” in Table 1.
By the Plotkin bound, this gives nothing over small fields.

Technique II in the table is an improvement based on Theorem 1, which
says that every code with 4δ > 3µ is (2, 2)-separating. We insert δ = 4µ/3
in (7)

and get

δ

3
ln(q − 1) = δ ln δ + (1− δ) ln(1− δ)

− 4δ

3
ln

4δ

3
− (1− 4δ

3
) ln(1− 4δ

3
).

(8)

We have solved this equation numerically for the smallest fields, and the
results are given in Table 1. Of course, we will always have

0 ≤ δ ≤ µ ≤ 1,

which will bound δ ≤ 3/4 in (8).
This results in no real solution of (8) for q ≥ 11.
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Technique I Technique II Constructions
q δmax δ Rate δ Rate Rate

2 0.5000 0.75 N/A 0.4286 0.01477 0.026
3 0.6667 0.75 N/A 0.5695 0.01859 0.0352
4 0.7500 0.75 N/A 0.6385 0.02206 0.029
5 0.8000 0.75 0.00459 0.6786 0.02532 0.028
7 0.8571 0.75 0.02043 0.7218 0.03153 0.019
8 0.8750 0.75 0.02774 0.7340 0.03457 0.021
9 0.8889 0.75 0.03427 0.7426 0.03766
11 0.9091 0.75 0.04530 N/A N/A
13 0.9231 0.75 0.05417 N/A N/A
16 0.9375 0.75 0.06464 N/A N/A
17 0.9412 0.75 0.06757 N/A N/A
19 0.9474 0.75 0.07279 N/A N/A

Table 1: Rates for which there exist (asymptotically) linear (2, 2)-separating
codes. The number δmax = (q − 1)/q is Plotkin upper bound.

Note that, in Table 1, the best results are obtained by the “Constructions”
for q ≤ 5, then by “Technique 2” for 7 ≤ q ≤ 9, and finally by “Technique
1” for higher values of q. In the binary case, R=0.0642 can be achieved
nonconstructively [10].
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