Upper bounds on separating codes they may compare their copies, and every differing symbol
must be part of the fingerprint. Thus having identified part of

Gérard D. CohenSenior Member, IEEE the fingerprint, the pirates may also change it and produce

Hans Georg SchaathuMember, IEEE illegal copies with invalid fingerprint. The fingerprints the
pirates are able to forge form the so-called feasible set, defined
as

Abstract—The combinatorial concept of separating systems
has numerous applications, such as automata theory, digital F(T) p— {(U17~--,Un) cQ" |
fingerprinting, group testing, and hashing. In this paper, we . .
derive upper bounds on the size of codes with various separating Vi,1 <i<n,3(ar,...,an) € T,a; = vi},

properties. whereT is the set of fingerprints held by the piratégjs the
~ Index Terms—separating systems, superimposed codes, hash-alphabet, and: is the length of a fingerprint.
ing, error-correcting codes If the set (code) of valid fingerprints still makes it possible

An (n, M,d), code is a set of\f words of lengthn over 10 trace at least one guilty pirate out of a coalition of size
an alphabet of elements, at minimum distandeapart. If the €SS, we say that the code has thdentifiable parent property
code forms a linear vector space of dimensior= log, M  (¢-IPP). If the pirates are able to forge the fingerprint of an
over GF(q), then we call it an[n,k,d], code. A (t,u)- innocent user, we say that this user is framed. Codes which
separating code, also known agtfau)-separating system or Prevent framing are called frameproof codes, and this concept
(t,u)-SS, is defined as follows. coincides with (¢, 1)-separation. Other kinds of separating
Definition 1: A pair (T,U) of disjoint sets of words is codes have also been used to construct IPP codes [4], [3].
called a(t,u)-configuration if #7° = ¢t and #U = u. Such [t Can_a_ls_o be_seen that_lf the code(tst)-separatmg, then no
a configuration is separated if there is a positipsuch that two disjoint pirate coallitions of size at mostcan produce
every word ofT is different from any word of/ on position the same false fingerprint; and theref¢ref)-SS are known as
; t-secure frameproof codes in the fingerprinting literature [24].

A code is (¢, u)-separating if everyt,u)-configuration is I [23] it was proved that the best known asymptotical
separated. (2,2)-separating codes are also 2-IPP witlerror. In [22]
The separating weight(T,U) of a (t,u)-configuration @ new scheme against three pirates is constructed based on
is the number of positions which separate it. Thét,«)- Separating codes.
separating weight; ,, of a codeC is the minimum of9(7, U) The case of2, 2)-separation was introduced by Sagalovich
for all (¢, u)-configurationgT, U). Note that; ; = d. In this in the context of automata: two such systems transiting si-
paper we present improvements on the upper bounds, ef Multaneously from state to o” and fromb to b’ respectively
separating codes. should be forbidden to pass through a common intermediate
state. A state of the system in this case ismabit binary
|. MOTIVATION string, and the moving from one state to another is obtained

: . hy flipping bits one by one. Only shortest paths from the old
The theory of separating systems has been applied t(')xthe new state are allowed, so moving framto o’ will

different areas of science and technology such as automatzil . o . ;o
. . . . . ._only involve flipping bits wherex and «’ differ. The set of
synthesis, technical diagnosis, constructions of hash functions,; : .
-valid statesT" forms a (2,2)-separating system, if for any

and authenticating ownership claims. Separating codes i$08r distinct statesq, o', b, and b’ from T, the transitions

. . . . r
combinatorial concept and has been studied as such in a St " and ; h h
theoretic framework, e.g. [16]. a — a’ andb — b’ cannot pass through any common state.

. . : : Sagalovich’s contribution on this topic is substantial and has
The recent interest in separating codes comes mainly fr

?Jnéen surveyed in [21]
digital fingerprinting [6]. A vendor distributes digital copies o y ‘

a copyrighted work, and she wants to prevent the users from
making illegal copies. A digital watermark is a perceptually in- Il. MINIMUM ALPHABET SIZE FOR LINEAR SS
visible pattern embedded in a digital file. Watermarking can be|f a linear code is to bét, u)-separating, then the alphabet
used to give every sold copy a unique ID, a digital fingerprintaust have a certain minimum size. Here we give lower bounds
identifying the buyer. If an illegal copy subsequently appearsn ¢. The result for binary codes is probably well-known, but
the user guilty of copying may be identified and prosecutedhe non-binary result appears to be unknown in the literature.
An interesting combinatorial problem arises in the venture Proposition 1: Let a and b be two linearly independent
to protect against coalitions of pirates. If several users colludghdewords, and writd’ = {a}U{b+aa | a € GF(q)}. Then
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Theorem 1:If C is a non-binary, lineaft,t')-separating, continuously been refined in various ways, see e.g. [21]. Here

thent + ¢ < g+ 1. we make yet a step forward in tightening the bounds, both
Proof: We have already proved thaiax{¢,t'} < ¢. It for separating codes and for the related superimposed and

only remains to prove that we can construct a non-separatanpletely separating codes.
(t,q + 2 — t)-configuration for all¢ such tha2 <t < ¢. By
symmetry, it is sufficient to show this when< ¢ + 2 — ¢,
in particular whent < ¢. Let ag,a,...,04—1 be all the
field elements, wherep = 0 anda; = 1. Let a andb be Separating codes are related to two stronger concepts.
two independent codewords. A non-separated + 2 — t)- Completely separating codeg,(t')-CSS) are used in automata

A. The binary case

configuration is given by theory and fault-tolerant systems alongside the separating
codes. Superimposed codeg, {')-Sl) where introduced in
({aoa, ..., ap1a} {ava,a+arb,...;a+ agri—b}). [14], and have been studied in several papers, e.g. [11], [12].
First note thai,a matchesd on every position not ing(a), ~ We Wwill consider the binary case only. Consider any t’

anda + b matchesa on every position not iry(b). In every codewords and view them as rows of a matrix. If the code

position inx(a) N x(b), we gett different field values in the IS Separating, there must be at least one separating column,
first set, and; + 1 — ¢ different field values from the + o;b.  Which is eitherxy = (0...01...1) with ¢ zeroes and’ ones,

Since there are only elements in the field, they cannot bePr x1 = (1...10...0) with ¢ ones and’ zeroes.
separated. n If the code is (¢,t')-superimposed, we demand at least

one column of typexg, and if the code igt,t")-completely

separating, we demand bath andx,. Thus separating codes

i is clearly the weakest concept, while completely separating
It was proved b%’ E]Iackburn [5] that anff, 1)-separating gy stems is the strongest. #f— #, superimposed codes and

cgde hasM < t-q - We ge_nerahsg this result for COdest:ompletely separating codes are equivalent, since the property

with a guaranteed, 1).-separat|ng Welghﬁt.; = 7n. Such has to hold for any ordering of the words.

codes have been studied in [13], [17] motivated by broadcasl'l_et ROSS(¢,4), RSI(¢,1), and RSS(,¢') be the best pos-

encryption. . sible asymptotic rates df,¢')-CSS, (¢,t')-Sl, and(t,t¢')-SS,
Partition {1,2,..n} into ¢t almost equal part$, ..., P; of respectively. Clearly we have

size [n/t] or [n/t]. Say a codeword is isolatedon P; if '

no other codeword projects ontordt-tuple on P; located at RSS(t,t') > RSU(t,¢') > ROSS(1,¢') > ERSS(t #).

distance less thafm/t)r from c. T T T2 ’
Lemma 1:If C has(t,1)-separating weightT or greater, \ze denote byR* (¢, ') any upper bound oR* (¢, ¢'). Let R(5)

then every codeword € C'is isolated on at least ong;.  pg any upper bound on the asymptotic rate of error-correcting
Proof: Suppose for a contradiction that there is @,4es with normalised minimum distange= d/n.

codgwordco which is isolated on .ncPl-. Letc; pe a codeword Proposition 2: Any binary (¢, u)-separating(o o, M, 0, 1)
at d|‘stance less thafn/t)T from it when projected ont@;, .qdeT" with separating weights, ,, for 1 < a < t and
for s = 1,...,t. Now co s separated from{cy,...,c;} ¢ < b < u, gives rise to, for any positive < min{t,u}, a
on less than(n/t)r coordinates per block, or less tham completely(t — v, u—v)-separatingfy o, M — 20,20y +1.041)
coordinate positions total. This contradicts the assumption gqer with complete-separating We7igh?§b = Ot b+’v for
the separating weight. _ B o ,<t—pandl<b<u—ou. ’ '

Der_10te by!; the subset of codewords isolated &h We Proof: Consider twou-tuplesV andV’ of words fromT",
have just proved tha’ C |J I;. Furthermore, every nonempty,cp, that they have separating weight,. Assume by transla-
[i is a code of minimum distance at ledgt/t)r] and thus o that(v, 17) hasd,., columns of the form(0...01...1).
size at mosty(1=7)"/] by the Singleton bound ([19]). This | ot I pe the code obtained frof by deleting every column
proves. ) ) where (V, V') is not separated and th&v words from V'

Theorem 2:If C' has(t, 1)-separating weight or greater, anq 7. Clearly I" has the length and size claimed by the

1-7)n/t
then#C < tgl =/, _ _ proposition. It remains to prove the statement on separating
For constantt, this asymptotically givesR < (1 — 1)/t weights.

whenn increases, wher& := (log, #C)/n is the code rate. | o (T,U) be a(t,u)-configuration fromI’ where#' <
If we let 7 tend to zero, we get an upper bound @n1)-SS, , _ . 2nd./ < u — v. Then both(V UT, V' UT) and(V’D
which was found independently in [10] and [5]. The proofs arg /| U) must have separating weiéht at ledst, , o\

essentially the same as the one presented here. Asymptoticglly ., implies that(T, U) is completely separated with weight
when n increases, the best possible rate oftal)-SS is at at leastfy ., .+, This holds even when restricting only to

I1l. ON (t,1)-SEPARATING CODES

most1/t. the positions wheréV, V') is separated. n
The following proposition is proved in the same way.
IV. UPPER BOUNDS BY PROJECTION Proposition 3: Any completely (t, u)-separating

In this section, we give a general presentation of the welln, M,26; ;) code with completely separating weights
known recursive projection arguments for upper bounds. THg,, for 1 < a < ¢t and1 < b < u, gives rise to, for any
technique have been used for decades, but the results hgesitivev < min{t, u}, a completely(t — v, u — v)-separating



[CSs _[SIc_ [ss |

the iterations are copied from other works. Observe that we

(X

g}; _ 8j§§$§ 8:21333 improve the bounds also of¥,¢)-superimposed codes for

(3,2) || 0.06627| 0.0744%| 0.1202 t> 3.

(4,2) || 0.04301| 0.04552| 0.07994 Example 1:Let C; be an asymptotic class @, 2", 6;)

(4,3) || 0.01533| 0.01828) 0.02951 (3,3)-SS. Then there is an asymptotic cl@ssof (0, 2%, 6,)
(%5 [ CSS [ SS l (2,2)-CSS. We have thaR, = k/6, < 0.161, and

I,1) [[ 1.0000 | 1.0000
2 23 0.161¢ | 0.2835 Ry = k/0p = Ryb1 < 0.16101,
3,3) || 0.03534 | 0.06627 Co .

4,4) || 0.008368| 0.01630 which is equivalent to

5

(5,5) || 0.002042| 0.004037
; Theorem 2 41 > R1/0.161.
3 Hé} We can use any upper bourd®(d) on R;, and get
4 Well known, see [21]. _ _
5 A slightly stronger bound is alleged in [8]. Ry < R(d1) < R(R1/0.161).
Using the Theorem 4, we gét; < 0.0663.
TABLE |

UPPER BOUNDS ON COMPLETELY SEPARATING CODEECSS),
SUPERIMPOSED CODE$SIC), AND SEPARATING CODES(SS)OVER A
BINARY ALPHABET. In the non-binary case, complete separation is not clearly
defined. Whery > 3, we are not able to prove a recursive
bound stronger than

B. The ternary case

(Oy0, M — 2v,20,41 ,+1) code with complete-separating RSS(t )< R RES(%U)
weightsofl’b =0p+vuto fOrl <a<t—vandl <b<u—w. a A= A

Theorem 3:We have fort,u > 2 that N . .
= which is considerably weaker than the binary result. The

2R°S(t, u) reason for this is found in the proofs of Propositions 2 and 3:
ROSS(t —1,u—1))’ since there are four alphabet symbols (or more), it is possible

RS (t,u) < R(

g8 _ RSS(t, ) to have one column which separates bgthJ T, V' UU) and
Proof: Let C be aft,1)-CSS with7rateR:RCSS(tv“)' In the ternary case, though, we get a strong analogue
and letC’ be the(t — 1,u — 1)-CSS which exists by Propo- of the t_Jinary r_esults by defining ternary pse_udo-c_ompletely
sition 3. Denote byR’ the rate ofC’. We have that separating weights. LefT,U) be a (¢, u)-configuration. A
separating columrn is of Type O ifx; # 1 for all x € T
5= 2@ — QlogM& —2R/R. andy; # 0 for all y € U. It is of Type 1 if z; # 0 for all
bo,0 o0 log M x € T andy; # 1 for all y € U. Note that one column can

Now, obviouslyR < R(5), which is decreasing ifi,, and this P€ Poth of Type 0 and of Type 1 if and only 4> 3.

gives the result. The bound dd’s is similar, except that the _ 1he pseudo-completely separating weight of a ternary code

minimum distance of” is d = 6, ; instead 0f26; ;. m O is the largest numbet; ., such that any, u)-configuration
This theorem provides a recursive bound on separatif§S &t 1€ast: . separating columns of Type 0 and at leést

codes. The general idea is not new, at least the derived bogk@arating columns of Type 1. _
on (2,2)-SS has been known for ages, see [21]. Even so, thel e following two lemmata can be proved using the proof

results we obtain here foft, ¢)-CSS are stronger than thosé®f Proposition 2. _
recently presented in [12] (except for= 2). Lemma 2:Any ternary (¢, u)-separating (6o,0, M, 61,1)
We use the linear programming bound #(5), as given in €0del’ with separating weight8, ;, for 1 < a <t andl <
the following theorem in itg-ary version. See [2] for the non-? < . gives rise to, for any positive < min{t, u}, a pseudo-
binary form and [20] for the original (binary) version. AlsoCOMPletely(t —v, u—v)-separatingf, ,, M —2v, 20, +1,0+1)
note improvements in [1], [18]. code I with pseudo-completely separating weigttts, =
Theorem 4 (Linear Programming Boundjor any Oato,uto- .
(n, M, d) g-ary code, we have Lemma 3:Any ternary pseudo-completely, u)-separating
T (6.0, M, 26, 1) code I’ with pseudo-completely separating
R(6) < Hy(((¢—1)—(g—2)0 —2¢/(qg —1)6(1 = 9))/q), weightsf,, for 1 <a <t andl < b < u, gives rise to, for
any positivev < min{¢, v}, a pseudo-completely —v, u—v)-
separating(6,,,, M — 2v,260,41,,+1) codeI” with pseudo-
Hy(z) = —(1 —z)log,(1 — z) — xlog, x + zlog,(q — 1). completely separating weight , = 6o+v,u-+v- _
In Table I, we summarise the rate we get for sntalind ~ Analogously to Theorem 3, we get the following theorem.
', and ¢ = 2. Most of the rates are obtained by usingable Il follows by combining Theorem 5 with the linear
the theorems of this section recursively. The first bounds Riogramming bound.

where



[ [PCSS [SS | [(&#) [PCSS [SS |
ORE T (3,2) | 0.1268 | 0.2197
(2’2) 0.2197 0.3537 (4,3) | 0.03751| 0.07056
(3:3) 006204 | 01138 (5,4) | 0.01180| 0.02290
(4.4) | 001913 | 0.03675 ggg; 008978 | 01008,
(5.5) | 0.006120] 0.01202 (5.2) | 0.06966 | 0.1268

TABLE Il

UPPER BOUNDS ON TERNARY SEPARATING CODESOMPUTED BY USING
THE BOUND R < 1/t FOR(t,1)-SSAND -PCSS (HEOREM 2) AND
RECURSIVE APPLICATION OFTHEOREM5.

3 0.3537
4 0.1683
5 0.09050
6 0.05206
TABLE Il

UPPER BOUNDS ON TERNARY LINEAR SEPARATING CODESOMPUTED BY
RECURSIVE APPLICATION OFCOROLLARY 2.

Theorem 5:We have fort, v > 2 that
2RYCSS(t )
RECSS(t —1,u—1)

— RSS(t u)
SsS 3 )
t < —
RS ( 7u) = R<R§CSS(LL 1,u 1)

Ry“™(t,u) <

)
)

C. The linear case

(1]
(2]
(3]

(4]

(5]
(6]

(7]

(8]
El

[10]

[11]

[12]

(23]

[14]

Let RLSS(¢, u) be the highest possible rate for an asymptotic

family of linear, g-ary (¢, u)-separating code.

Proposition 4: Any linear separatingfy o, k, 61,1] codeC
with separating weighté, ;, wherel < a <t andl1 <b <
u, gives rise to a linear separatin@ 1,k — 1,61 2] codeC’
with separating weightg’, , = 6, ,+1, wherel < a < ¢ and
1<b<u-—1. ’

Proof: Letc € C be a codeword of weight, ;. Let C’
be the code obtained by shorteni@igon every position where
c is zero. It remains to prove that, ,(C’) > 0,.54+1(C) for
all @ andb. It is sufficient that anya, b)-configuration(A, B)
of ¢’ with 0 € A has separating weight at leakt ;1 (C').
Consider the correspondirig, b+ 1)-configuration(A, B') =
(A, BU{c}) in C. Observe thatA, B") can only be separated
wherec is non-zero, i.e. on positions existing @. Hence
0(A,B) =60(A,B’') > 0,+1(C) as required. |

Corrollary 2: For anyt > 1 andu > 2, we have

_/ RVSS(t,u)
LSS t < 4 ’ )
By (0w < B\ Frssi - 1)
Note that this bound depends only on the sum. We have
computed numerical values fgr= 3 in Table Ill. Applying

[15]
[16]
[17]

(18]

[19]

[20]

21]
[22]

(23]

[24]

the corollary forg = 2 gives the same bounds as the ones

obtained from intersecting codes in [9].

V. CONCLUSION
We have refined the upper bounds ¢hu)-separating

codes. This has also led to improvements on the upper bounds

for (t,t)-superimposed codes (completely separating codes).
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