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Abstract— The combinatorial concept of separating systems
has numerous applications, such as automata theory, digital
fingerprinting, group testing, and hashing. In this paper, we
derive upper bounds on the size of codes with various separating
properties.

Index Terms— separating systems, superimposed codes, hash-
ing, error-correcting codes

An (n, M, d)q code is a set ofM words of lengthn over
an alphabet ofq elements, at minimum distanced apart. If the
code forms a linear vector space of dimensionk = logq M
over GF(q), then we call it an[n, k, d]q code. A (t, u)-
separating code, also known as a(t, u)-separating system or
(t, u)-SS, is defined as follows.

Definition 1: A pair (T,U) of disjoint sets of words is
called a(t, u)-configuration if#T = t and #U = u. Such
a configuration is separated if there is a positioni, such that
every word ofT is different from any word ofU on position
i.

A code is (t, u)-separating if every(t, u)-configuration is
separated.

The separating weightθ(T,U) of a (t, u)-configuration
is the number of positionsi which separate it. The(t, u)-
separating weightθt,u of a codeC is the minimum ofθ(T,U)
for all (t, u)-configurations(T,U). Note thatθ1,1 = d. In this
paper we present improvements on the upper bounds on(t, u)-
separating codes.

I. M OTIVATION

The theory of separating systems has been applied in
different areas of science and technology such as automata
synthesis, technical diagnosis, constructions of hash functions,
and authenticating ownership claims. Separating codes is a
combinatorial concept and has been studied as such in a set-
theoretic framework, e.g. [16].

The recent interest in separating codes comes mainly from
digital fingerprinting [6]. A vendor distributes digital copies of
a copyrighted work, and she wants to prevent the users from
making illegal copies. A digital watermark is a perceptually in-
visible pattern embedded in a digital file. Watermarking can be
used to give every sold copy a unique ID, a digital fingerprint,
identifying the buyer. If an illegal copy subsequently appears,
the user guilty of copying may be identified and prosecuted.

An interesting combinatorial problem arises in the venture
to protect against coalitions of pirates. If several users collude,
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they may compare their copies, and every differing symbol
must be part of the fingerprint. Thus having identified part of
the fingerprint, the pirates may also change it and produce
illegal copies with invalid fingerprint. The fingerprints the
pirates are able to forge form the so-called feasible set, defined
as

F (T ) := {(v1, . . . , vn) ∈ Qn |
∀i, 1 ≤ i ≤ n,∃(a1, . . . , an) ∈ T, ai = vi},

whereT is the set of fingerprints held by the pirates,Q is the
alphabet, andn is the length of a fingerprint.

If the set (code) of valid fingerprints still makes it possible
to trace at least one guilty pirate out of a coalition of sizet or
less, we say that the code has thet-identifiable parent property
(t-IPP). If the pirates are able to forge the fingerprint of an
innocent user, we say that this user is framed. Codes which
prevent framing are called frameproof codes, and this concept
coincides with (t, 1)-separation. Other kinds of separating
codes have also been used to construct IPP codes [4], [3].
It can also be seen that if the code is(t, t)-separating, then no
two disjoint pirate coallitions of size at mostt can produce
the same false fingerprint; and therefore(t, t)-SS are known as
t-secure frameproof codes in the fingerprinting literature [24].

In [23] it was proved that the best known asymptotical
(2, 2)-separating codes are also 2-IPP withε-error. In [22]
a new scheme against three pirates is constructed based on
separating codes.

The case of(2, 2)-separation was introduced by Sagalovich
in the context of automata: two such systems transiting si-
multaneously from statea to a′ and fromb to b′ respectively
should be forbidden to pass through a common intermediate
state. A state of the system in this case is ann-bit binary
string, and the moving from one state to another is obtained
by flipping bits one by one. Only shortest paths from the old
to the new state are allowed, so moving froma to a′ will
only involve flipping bits wherea and a′ differ. The set of
valid statesΓ forms a (2, 2)-separating system, if for any
four distinct states,a, a′, b, and b′ from Γ, the transitions
a → a′ and b → b′ cannot pass through any common state.
Sagalovich’s contribution on this topic is substantial and has
been surveyed in [21].

II. M INIMUM ALPHABET SIZE FOR LINEAR SS

If a linear code is to be(t, u)-separating, then the alphabet
must have a certain minimum size. Here we give lower bounds
on q. The result for binary codes is probably well-known, but
the non-binary result appears to be unknown in the literature.

Proposition 1: Let a and b be two linearly independent
codewords, and writeT = {a}∪{b+αa | α ∈ GF(q)}. Then
(0, T ) is a (q + 1, 1)-configuration which is not separated.

Proof: We shall prove that in every positioni, at least
one codeword inT has a0. If ai = 0, this holds, so assume
ai 6= 0. Thenb− a−1

i bia has 0 in positioni, as required.
Corrollary 1: If C is q-ary, linear (t, t′)-separating, then

max{t, t′} ≤ q.
This bound is tight in the binary case, since(2, 2)-separating,
binary, linear codes are known to exist (e.g. [21]).
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Theorem 1:If C is a non-binary, linear(t, t′)-separating,
then t + t′ ≤ q + 1.

Proof: We have already proved thatmax{t, t′} ≤ q. It
only remains to prove that we can construct a non-separated
(t, q + 2 − t)-configuration for allt such that2 ≤ t ≤ q. By
symmetry, it is sufficient to show this whent ≤ q + 2 − t,
in particular whent < q. Let α0, α1, . . . , αq−1 be all the
field elements, whereα0 = 0 and α1 = 1. Let a and b be
two independent codewords. A non-separated(t, q + 2 − t)-
configuration is given by

({α0a, . . . , αt−1a}, {αta,a + α1b, . . . ,a + αq+1−tb}).

First note thatαta matches0 on every position not inχ(a),
anda + b matchesa on every position not inχ(b). In every
position inχ(a) ∩ χ(b), we gett different field values in the
first set, andq +1− t different field values from thea+αib.
Since there are onlyq elements in the field, they cannot be
separated.

III. O N (t, 1)-SEPARATING CODES

It was proved by Blackburn [5] that any(t, 1)-separating
code hasM ≤ t · qdn/te. We generalise this result for codes
with a guaranteed(t, 1)-separating weightθt,1 = τn. Such
codes have been studied in [13], [17] motivated by broadcast
encryption.

Partition{1, 2, ..n} into t almost equal partsP1, . . . , Pt of
size bn/tc or dn/te. Say a codewordc is isolated on Pi if
no other codeword projects onto an/t-tuple onPi located at
distance less than(n/t)τ from c.

Lemma 1: If C has(t, 1)-separating weightnτ or greater,
then every codewordc ∈ C is isolated on at least onePi.

Proof: Suppose for a contradiction that there is a
codewordc0 which is isolated on noPi. Let ci be a codeword
at distance less than(n/t)τ from it when projected ontoPi,
for i = 1, . . . , t. Now c0 is separated from{c1, . . . , ct}
on less than(n/t)τ coordinates per block, or less thannτ
coordinate positions total. This contradicts the assumption on
the separating weightτ .

Denote byIi the subset of codewords isolated onPi. We
have just proved thatC ⊂

⋃
Ii. Furthermore, every nonempty

Ii is a code of minimum distance at leastb(n/t)τc and thus
size at mostqd(1−τ)n/te by the Singleton bound ([19]). This
proves:

Theorem 2:If C has(t, 1)-separating weightnτ or greater,
then#C ≤ tqd(1−τ)n/te.

For constantt, this asymptotically givesR ≤ (1 − τ)/t
whenn increases, whereR := (logq #C)/n is the code rate.
If we let τ tend to zero, we get an upper bound on(t, 1)-SS,
which was found independently in [10] and [5]. The proofs are
essentially the same as the one presented here. Asymptotically
when n increases, the best possible rate of a(t, 1)-SS is at
most1/t.

IV. U PPER BOUNDS BY PROJECTION

In this section, we give a general presentation of the well-
known recursive projection arguments for upper bounds. The
technique have been used for decades, but the results have

continuously been refined in various ways, see e.g. [21]. Here
we make yet a step forward in tightening the bounds, both
for separating codes and for the related superimposed and
completely separating codes.

A. The binary case

Separating codes are related to two stronger concepts.
Completely separating codes ((t, t′)-CSS) are used in automata
theory and fault-tolerant systems alongside the separating
codes. Superimposed codes ((t, t′)-SI) where introduced in
[14], and have been studied in several papers, e.g. [11], [12].

We will consider the binary case only. Consider anyt + t′

codewords and view them as rows of a matrix. If the code
is separating, there must be at least one separating column,
which is eitherx0 = (0 . . . 01 . . . 1) with t zeroes andt′ ones,
or x1 = (1 . . . 10 . . . 0) with t ones andt′ zeroes.

If the code is (t, t′)-superimposed, we demand at least
one column of typex0, and if the code is(t, t′)-completely
separating, we demand bothx1 andx0. Thus separating codes
is clearly the weakest concept, while completely separating
systems is the strongest. Ift = t′, superimposed codes and
completely separating codes are equivalent, since the property
has to hold for any ordering of the words.

Let RCSS(t, t′), RSI(t, t′), andRSS(t, t′) be the best pos-
sible asymptotic rates of(t, t′)-CSS,(t, t′)-SI, and(t, t′)-SS,
respectively. Clearly we have

RSS(t, t′) ≥ RSI(t, t′) ≥ RCSS(t, t′) ≥ 1
2
RSS(t, t′).

We denote bȳRx(t, t′) any upper bound onRx(t, t′). Let R̄(δ)
be any upper bound on the asymptotic rate of error-correcting
codes with normalised minimum distanceδ = d/n.

Proposition 2: Any binary (t, u)-separating(θ0,0,M, θ1,1)
code Γ with separating weightsθa,b, for 1 ≤ a ≤ t and
1 ≤ b ≤ u, gives rise to, for any positivev < min{t, u}, a
completely(t−v, u−v)-separating(θv,v,M−2v, 2θv+1,v+1)
codeΓ′ with complete-separating weightsθ′a,b = θa+v,b+v for
1 ≤ a ≤ t− v and1 ≤ b ≤ u− v.

Proof: Consider twov-tuplesV andV ′ of words fromΓ,
such that they have separating weightθv,v. Assume by transla-
tion that(V, V ′) hasθv,v columns of the form(0 . . . 01 . . . 1).
Let Γ′ be the code obtained fromΓ by deleting every column
where (V, V ′) is not separated and the2v words from V
and V ′. Clearly Γ′ has the length and size claimed by the
proposition. It remains to prove the statement on separating
weights.

Let (T,U) be a (t′, u′)-configuration fromΓ where t′ ≤
t− v andu′ ≤ u− v. Then both(V ∪ T, V ′ ∪ U) and (V ′ ∪
T, V ∪ U) must have separating weight at leastθt′+v,u′+v,
which implies that(T,U) is completely separated with weight
at leastθt′+v,u′+v. This holds even when restricting only to
the positions where(V, V ′) is separated.

The following proposition is proved in the same way.
Proposition 3: Any completely (t, u)-separating

(n, M, 2θ1,1) code with completely separating weights
θa,b, for 1 ≤ a ≤ t and 1 ≤ b ≤ u, gives rise to, for any
positivev < min{t, u}, a completely(t− v, u− v)-separating
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(t, t′) CSS SIC SS

(2, 1) — 0.32192 0.51

(3, 1) — 0.19932 0.33331

(3, 2) 0.06627 0.074493 0.1202
(4, 2) 0.04301 0.045523 0.07994
(4, 3) 0.01533 0.018283 0.02951

(t, t) CSS SS

(1, 1) 1.0000 1.0000
(2, 2) 0.16102 0.28354

(3, 3) 0.03534 0.066275

(4, 4) 0.008368 0.01630
(5, 5) 0.002042 0.004037
1 Theorem 2
2 [12]
3 [15]
4 Well known, see [21].
5 A slightly stronger bound is alleged in [8].

TABLE I

UPPER BOUNDS ON COMPLETELY SEPARATING CODES(CSS),

SUPERIMPOSED CODES(SIC), AND SEPARATING CODES(SS)OVER A

BINARY ALPHABET.

(θv,v,M − 2v, 2θv+1,v+1) code with complete-separating
weightsθ′a,b = θa+v,u+v for 1 ≤ a ≤ t−v and1 ≤ b ≤ u−v.

Theorem 3:We have fort, u ≥ 2 that

RCSS(t, u) ≤ R̄

(
2RCSS(t, u)

R̄CSS(t− 1, u− 1)

)
,

RSS(t, u) ≤ R̄

(
RSS(t, u)

R̄CSS(t− 1, u− 1)

)
.

Proof: Let C be a(t, u)-CSS with rateR = RCSS(t, u),
and letC ′ be the(t − 1, u − 1)-CSS which exists by Propo-
sition 3. Denote byR′ the rate ofC ′. We have that

δ = 2
θ1,1

θ0,0
= 2

log M

θ0,0

θ1,1

log M
= 2R/R′.

Now, obviouslyR ≤ R̄(δ), which is decreasing inδt, and this
gives the result. The bound onRSS is similar, except that the
minimum distance ofC is d = θ1,1 instead of2θ1,1.

This theorem provides a recursive bound on separating
codes. The general idea is not new, at least the derived bound
on (2, 2)-SS has been known for ages, see [21]. Even so, the
results we obtain here for(t, t)-CSS are stronger than those
recently presented in [12] (except fort = 2).

We use the linear programming bound forR̄(δ), as given in
the following theorem in itsq-ary version. See [2] for the non-
binary form and [20] for the original (binary) version. Also
note improvements in [1], [18].

Theorem 4 (Linear Programming Bound):For any
(n, M, d) q-ary code, we have

R(δ) ≤ Hq(((q − 1)− (q − 2)δ − 2
√

(q − 1)δ(1− δ))/q),

where

Hq(x) = −(1− x) logq(1− x)− x logq x + x logq(q − 1).
In Table I, we summarise the rate we get for smallt and

t′, and q = 2. Most of the rates are obtained by using
the theorems of this section recursively. The first bounds in

the iterations are copied from other works. Observe that we
improve the bounds also on(t, t)-superimposed codes for
t ≥ 3.

Example 1:Let C1 be an asymptotic class of(θ0, 2k, θ1)
(3, 3)-SS. Then there is an asymptotic classC2 of (θ1, 2k, θ2)
(2, 2)-CSS. We have thatR2 = k/θ1 ≤ 0.161, and

R1 = k/θ0 = R2δ1 ≤ 0.161δ1,

which is equivalent to

δ1 ≥ R1/0.161.

We can use any upper bound̄R(δ) on R1, and get

R1 ≤ R̄(δ1) ≤ R̄(R1/0.161).

Using the Theorem 4, we getR1 ≤ 0.0663.

B. The ternary case

In the non-binary case, complete separation is not clearly
defined. Whenq > 3, we are not able to prove a recursive
bound stronger than

RSS
q (t, u) ≤ R̄

(
RSS

q (t, u)
R̄SS

q (t− 1, u− 1)

)
,

which is considerably weaker than the binary result. The
reason for this is found in the proofs of Propositions 2 and 3:
since there are four alphabet symbols (or more), it is possible
to have one column which separates both(V ∪T, V ′∪U) and
(V ′ ∪ T, V ∪ U).

In the ternary case, though, we get a strong analogue
of the binary results by defining ternary pseudo-completely
separating weights. Let(T,U) be a (t, u)-configuration. A
separating columni is of Type 0 if xi 6= 1 for all x ∈ T
and yi 6= 0 for all y ∈ U . It is of Type 1 if xi 6= 0 for all
x ∈ T and yi 6= 1 for all y ∈ U . Note that one column can
be both of Type 0 and of Type 1 if and only ifq > 3.

The pseudo-completely separating weight of a ternary code
C is the largest numberθt,u such that any(t, u)-configuration
has at leastθt,u separating columns of Type 0 and at leastθt,u

separating columns of Type 1.
The following two lemmata can be proved using the proof

of Proposition 2.
Lemma 2:Any ternary (t, u)-separating (θ0,0,M, θ1,1)

codeΓ with separating weightsθa,b, for 1 ≤ a ≤ t and 1 ≤
b ≤ u, gives rise to, for any positivev < min{t, u}, a pseudo-
completely(t−v, u−v)-separating(θv,v,M−2v, 2θv+1,v+1)
code Γ′ with pseudo-completely separating weightsθ′a,b =
θa+v,u+v.

Lemma 3:Any ternary pseudo-completely(t, u)-separating
(θ0,0,M, 2θ1,1) code Γ with pseudo-completely separating
weightsθa,b, for 1 ≤ a ≤ t and1 ≤ b ≤ u, gives rise to, for
any positivev < min{t, u}, a pseudo-completely(t−v, u−v)-
separating(θv,v,M − 2v, 2θv+1,v+1) code Γ′ with pseudo-
completely separating weightsθ′a,b = θa+v,u+v.

Analogously to Theorem 3, we get the following theorem.
Table II follows by combining Theorem 5 with the linear
programming bound.
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(t, t) PCSS SS

(1, 1) 1 1
(2, 2) 0.2197 0.3537
(3, 3) 0.06204 0.1138
(4, 4) 0.01913 0.03675
(5, 5) 0.006120 0.01202

(t, t′) PCSS SS

(3, 2) 0.1268 0.2197
(4, 3) 0.03751 0.07056
(5, 4) 0.01180 0.02290
(4, 2) 0.08978 0.1605
(5, 3) 0.02713 0.05167
(5, 2) 0.06966 0.1268

TABLE II

UPPER BOUNDS ON TERNARY SEPARATING CODES, COMPUTED BY USING

THE BOUND R ≤ 1/t FOR (t, 1)-SSAND -PCSS (THEOREM 2) AND

RECURSIVE APPLICATION OFTHEOREM 5.

t + u Rate

3 0.3537
4 0.1683
5 0.09050
6 0.05206

TABLE III

UPPER BOUNDS ON TERNARY LINEAR SEPARATING CODES, COMPUTED BY

RECURSIVE APPLICATION OFCOROLLARY 2.

Theorem 5:We have fort, u ≥ 2 that

RPCSS
3 (t, u) ≤ R̄

(
2RPCSS

3 (t, u)
R̄PCSS

3 (t− 1, u− 1)

)
,

RSS
3 (t, u) ≤ R̄

(
RSS

3 (t, u)
R̄PCSS

3 (t− 1, u− 1)

)
.

C. The linear case

Let RLSS
q (t, u) be the highest possible rate for an asymptotic

family of linear, q-ary (t, u)-separating code.
Proposition 4: Any linear separating[θ0,0, k, θ1,1] codeC

with separating weightsθa,b, where1 ≤ a ≤ t and 1 ≤ b ≤
u, gives rise to a linear separating[θ0,1, k − 1, θ1,2] codeC ′

with separating weightsθ′a,b = θa,b+1, where1 ≤ a ≤ t and
1 ≤ b ≤ u− 1.

Proof: Let c ∈ C be a codeword of weightθ1,1. Let C ′

be the code obtained by shorteningC on every position where
c is zero. It remains to prove thatθa,b(C ′) ≥ θa,b+1(C) for
all a andb. It is sufficient that any(a, b)-configuration(A,B)
of C ′ with 0 ∈ A has separating weight at leastθa,b+1(C).
Consider the corresponding(a, b+1)-configuration(A,B′) =
(A,B∪{c}) in C. Observe that(A,B′) can only be separated
wherec is non-zero, i.e. on positions existing inC ′. Hence
θ(A,B) = θ(A,B′) ≥ θa,b+1(C) as required.

Corrollary 2: For anyt ≥ 1 andu ≥ 2, we have

RLSS
q (t, u) ≤ R̄

(
RLSS

q (t, u)
R̄LSS

q (t, u− 1)

)
.

Note that this bound depends only on the sumt+u. We have
computed numerical values forq = 3 in Table III. Applying
the corollary forq = 2 gives the same bounds as the ones
obtained from intersecting codes in [9].

V. CONCLUSION

We have refined the upper bounds on(t, u)-separating
codes. This has also led to improvements on the upper bounds
for (t, t)-superimposed codes (completely separating codes).
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