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Abstract Separating codes, initially introduced to test automaton, have
revived lately in the study of fingerprinting codes, which are used for
copyright protection. Separating codes play their role in making the fin-
gerprinting scheme secure agains coalitions of pirates. We provide here
better bounds, constructions and generalizations for these codes.

1 Introduction

Separating codes were introduced in 1969 and have been the topic of several
papers with various motivations. Many initial results are due to Sagalovich;
see [3] for a survey, and also [2,5]. New applications of separating codes have
appeared during the last decade, namely traitor tracing and fingerprinting.

Fingerprinting is a proposed technique for copyright protection. The vendor
has some copyrighted work of which he wants to sell copies to customers. If he is
not able to prevent the customer from duplicating his copy, he may individually
mark every copy sold with a unique fingerprint. If an illegal copy (for which the
vendor has not been paid) subsequently appears, it may be traced back to one
legal copy and one pirate via the fingerprint. A pirate is here any customer guilty
of illegal copying of the copyrighted work.

Traitor tracing is the same idea applied to broadcast encryption keys. E.g.
the vendor broadcasts encrypted pay-TV, and each customer buys or leases a
decoder box to be able to decrypt the programmes. If the vendor is not able to
make the decoder completely tamperproof, he may fingerprint the decryption
keys which are stored in the box.

The set of fingerprints in use, is called the fingerprinting code. Separating
codes are used in the study of collusion secure fingerprinting codes. If several
pirates collude, they posess several copies with different fingerprints. By compar-
ing their copies, they will find differences which must be part of the fingerprint.



These identified “marks” may be changed to produce a false fingerprint. A collu-
sion secure code should aim to identify at least one of the pirates from this false
fingerprint.

We shall introduce two useful concepts regarding collusion secure codes. If
the code is t-frameproof, it is impossible for any collusion of at most t pirates
to produce a false fingerprint which is also a valid fingerprint of an innocent
user. In other words, no user may be framed by a coalition of t pirates or less. A
t-frameproof code is the same as a (t, 1)-separating code, which will be defined
formally in the next section.

If the code is t-identifying, the vendor is always able to identify at least one
pirate from any coalition of size at most t, given a false fingerprint created by
the coalition. A first step towards identification is (t, t)-separation (see, e.g. [4]),
which we study and generalize here.

2 Definitions

For any positive real number x we denote by dxe the smallest integer at least
equal to x. Let A be an alphabet of q elements, and An the set of sequences
of length n over it. A subset C ⊆ An is called an (n,M)q or (n,M)-code if
|C| = M . Its rate is defined by R = (logqM)/n. For any x ∈ An, we write xi
for the i-th component, so that x = (x1, x2, . . . , xn). The minimum Hamming
distance between two elements (codewords) of C is denoted by d(C) or d, and
the normalised quantity d/n by δ.

Consider a subset C ⊆ C. For any position i, we define the projection Pi(C) =⋃
a∈C{ai}. The feasible set of C is

F (C) = {x ∈ An : ∀i, xi ∈ Pi(C)}.

If C is the fingerprints held by some pirate coalition, then F (C) is the set
of fingerprints they may produce. If two non-intersecting coalitions can produce
the same descendant, i.e., if their feasible sets intersect, it will be impossible to
trace with certainty even one pirate. This motivates the following definition.

Definition 1. A code C is (t, t′)-separating if, for any pair (T, T ′) of disjoint
subsets of C where |T | = t and |T ′| = t′, the feasible sets are disjoint, i.e.
F (T ) ∩ F (T ′) = ∅.

Such codes are also called separating systems, abbreviated by SS.
Since the separation property is preserved by translation, we shall always

assume that 0 ∈ C. The separation property can be rephrased as follows when
q = 2: For any ordered t+ t′-tuple of codewords, there is a coordinate where the
t+ t′-tuple (1..10..0) of weight t or its complement occurs.

Given a (t, t′)-configuration (T, T ′) we define the separating set Θ(T, T ′) to
be the set of coordinate positions where (T, T ′) is separated. Let θ(T, T ′) :=
#Θ(T, T ′) be the separating weight. Clearly θ(T, T ′) ≥ 1 is equivalent with
(T, T ′) being separated. The minimum (t, t′)-separating weight θt,t′(C) is the



least separating weight of any (t, t′)-configuration of C. We abbreviate θi,i(C)
to θi(C) or θi. Clearly θ1(C) = d(C). The minimum separating weights have
previously been studied by Sagalovich [3].

3 Bounds on (t, 1) separating codes

The case t′ = 1 corresponds to “frameproof” codes introduced in [1]. Körner
(personal communication) has a simplified proof of R ≤ 1/2 for (1,2)-separation
in the binary case. We generalize it to any t and q, and for bounded separating
weight nτ .

A (t, τ)-coverfree code is a code with (t, 1)-separating weight at least equal
to τn. Their study in [11] and [9] is motivated by broadcast encryption.

Partition {1, 2, ..n} into t almost equal parts P1, . . . , Pt of size approximately
n/t. Say a codeword c is isolated on Pi if no other codeword projects on Pi on
a vector located at distance less than (n/t)τ from c. Denote by Ui the subset of
codewords isolated on Pi.

Lemma 1. If C is (t, τ)-coverfree, then every codeword c of C is isolated on at
least one Pi.

Proof: Suppose for a contradiction that there is a codeword c0 which is
not isolated. Let ci be a codeword which is at distance less than (n/t)τ when
projected onto Pi, for i = 1, . . . , t. Now c0 is separated from {c1, . . . , ct} on less
than (n/t)τ coordinates per block, or at most nτ − t coordinate positions total.
This contradicts the assumption on the separating weight τ .

If we let τ tend to zero, we get an upper bound on the size of (t, 1)-separating
codes, which was found independently in [13] and [12]. The proofs are essentially
the same as the one presented here.

Theorem 1. If C is (t, τ)-coverfree, then |C| ≤ tqd(1−τ)n/te.

For constant t, this asymptotically gives a rateR ≤ (1−τ)/t when n increases.
A lower bound on the rate can now be obtained by invoking a sufficient condition
for C to be (t, τ)-coverfree, based on its minimum distance d: td ≥ (t− 1 + τ)n.
This is proved in a more general form in Proposition 1. Using algebraic-geometric
(AG) codes [7] with δ > t−1(1−τ) and R ≈ 1−δ−1/(q1/2−1) gives the following
asymptotically tight (in q):

Theorem 2. For fixed t and large enough q, the largest possible rate of a q-ary
family of (t, τ)-coverfree codes satisfies R = t−1(1− τ)(1 + o(1)).

4 Large separation

Definition 2. A code C of length n is (t, t′, τ)-separating if, for any pair (T, T ′)
of disjoint subsets of C where |T | = t and |T ′| = t′, θ(T, T ′) ≥ τn.



Proposition 1. A code with minimum distance d is (t, t′, τ)-separating if

tt′d ≥ (tt′ − 1 + τ)n.

Proof: Consider two disjoints sets T and T ′ of sizes t and t′ respectively and
count the sum Σ of pairwise distances between them: on one hand, Σ ≥ tt′d ≥
(tt′ − 1 + τ)n. Computing Σ coordinatewise now, we get that the contribution
to Σ of at least τn coordinates must be greater than tt′ − 1, i.e. tt′. Thus, these
coordinates separate T and T ′.

To construct infinite families of separating codes over small alphabets, we
can resort to the classical notion of concatenation.

Definition 3 (Concatenation). Let C1 be a (n1, Q)q and let C2 be an (n2,M)Q
code. Then the concatenated code C1 ◦C2 is the (n1n2,M)q code obtained by tak-
ing the words of C2 and mapping every symbol on a word from C1.

The following result is an easy consequence of the definition.

Proposition 2. Let Γ1 be a (n1,M)M ′ code with minimum separating weight
θ
(1)
t,t′ , and let Γ2 be a (n2,M

′)q code with minimum separating weight θ(2)t,t′ . Then

the concatenated code Γ := Γ2 ◦ Γ1 has minimum separating weight θt,t′ = θ
(1)
t,t′ ·

θ
(2)
t,t′ .

We shall illustate the concatenation method with q = 2, t = 2, t′ = 1 in the
next section.

5 The binary case

5.1 (2, 1)-separation

In [8], it was pointed out that shortened Kerdock codes K ′(m) for m ≥ 4 are
(2, 1)-separating. Take an arbitary subcode of size 112 inK ′(4) which is a (15, 27)
(2, 1)-SS. Concatenate it with an infinite family of algebraic-geometry codes over
GF(112) (the finite field with 112 elements) with δ > 1/2 (hence (2, 1)-separating
by Proposition 1) and R ≈ 1/2 − 1/11 [7]. After some easy computations, this
gives:

Theorem 3. There is a constructive asymptotic family of binary (2, 1)-separating
codes with rate R = 0.1845.

This can even be refined if we concatenate with the codes contained in the
following proposition from [10].

Proposition 3. Suppose that q = p2r with p prime, and that t is an integer
such that 2 ≤ t ≤ √q−1. Then there is an asymptotic family of (t, 1)-separating
codes with rate

R =
1

t
− 1
√
q − 1

+
1− 2 logq t

t(
√
q − 1)

.

Remark 1. If we use the Xing’s codes ([10]), we get an improved rate of R ≈
0.2033, but at the expense of constructivity.



5.2 A stronger property

Definition 4 (Completely Separating Code). A binary code is said to be
(t, t′)-completely separating ((t, t′)-CSS) if for any set ordered set of t+ t′ code-
words, there is at least one column with 1 in the t upper positions, and 0 else-
where, and one column with 0 in the t upper positions and 1 in the t′ lower
ones.

We define RSS(t, t′) as the largest possible asymptotical rate of a family of
(t, t′)-SS, and similarly RCSS(t, t′) for (t, t′)-CSS. We clearly have

RSS(t, t′) ≥ RCSS(t, t′) ≥ 1

2
RSS(t, t′). (1)

5.3 Improved upper bounds on (t, t)-separating codes

Theorem 4. A (t, t)-separating (θ0,M, θ1) code with separating weights (θ1, . . . , θt)
gives rise to a (i, i)-CSS (θt−i,M − 2t + 2i, 2θt+1−i) with complete-separating
weight θi, for any i < t.

Proof: Consider a pair of (t− i)-tuples of vectors which are separated on θt−i
positions. Pick any vector c from the first (t − i)-tuple and replace the code C
by its translation C − c. Thus all the columns which separates the two tuples
have the form (0 . . . 01 . . . 1).

Now consider any two i-tuples of vectors. Coupling each i-tuple with a (t−i)-
tuple, we get two t-tuples which must be separated on θt positions, i.e. the two
i-tuples must have at least θt columns of the form (0 . . . 01 . . . 1). Now, observe
that we can swap the two (t − i)-tuples, and the two resulting t-tuples are still
separated. This guarantees at least θt columns of the form (1 . . . 10 . . . 0).

Deleting all the columns where the two (t− i)-tuples are not separated, and
the words of these two tuples must this leave us with an (i, i)-CSS with complete-
separating weight θi and parameters (θt−i,M − 2t+ 2i, 2θt+1−i), as required.

Theorem 5. Any completely (t, t)-separating (θ0,M, 2θ1) code with complete-
separating weights (θ1, . . . , θt) gives rise to a completely (i, i)-separating (θt−i,M−
2t+ 2i, 2θt+1−i) code with complete-separating weight θi, for any i < t.

This is proved in the same way as the previous theorem.

Theorem 6. For any (t, t)-CSS, the rate Rt satisfies

Rt ≤ R̄(2Rt/R̄t−1),

where R̄(δ) is any upper bound on the rate of error-correcting codes in terms of
the normalised minimum distance, and R̄t−1 is the upper bound on the rate of
any (t− 1, t− 1)-CSS.



Proof: Let Ct−1 be the (t− 1, t− 1)-CSS which exists by Theorem 5, and let
Rt−1 be its rate. We have that

δt = 2
θ1
θ0

= 2
logM

θ0

θ1
logM

= 2Rt/Rt−1.

Now, obviously Rt ≤ R̄(δt), which is decreasing in δt, and this gives the result.
With a completely analogous proof, we also get the following.

Theorem 7. For any (t, t)-SS, the rate R satisfies

R ≤ R̄(R/R̄t−1),

where R̄(δ) is any upper bound on the rate of error-correcting codes in terms of
the normalised minimum distance, and R̄t−1 is the upper bound on the rate of
any (t− 1, t− 1)-CSS.

Bound 1 D’yachkov et al. Bound 2
(t, t) CSS rate SS rate CSS rate CSS rate SS rate
(1,1) 1 1 1 1 1
(2,2) 0.1712 0.2835 0.161 – –
(3,3) 0.03742 0.06998 0.0445 0.0354 0.0663
(4,4) 0.008843 0.01721 0.0123 0.00837 0.0163
(5,5) 0.002156 0.004261 0.00333 0.00204 0.00404

Table 1. Rate bounds on CSS and SS.

Setting equality in the bounds and solving, we get the upper bounds given as
‘Bound 1’ in Table 1. Comparing with the CSS bounds of [6] shows an improve-
ment from (3, 3)-CSS onwards. However, [6] has a good bound on (2, 2)-CSS,
used as a seed for the recursive bounds of our theorems to obtain ‘Bound 2’ in
the table.

Example 1. Let C1 be an asymptotic class of (θ0, 2
k, θ1) (3, 3)-SS. Then there

is an asymptotic class C2 of (θ1, 2
k, θ2) (2, 2)-CSS. We have that R2 = k/θ1 ≤

0.161, and
R1 = k/θ0 = R2δ1 ≤ 0.161δ1,

which is equivalent to δ1 ≥ R1/0.161. We can use any upper bound R̄(δ) on R1,
and get

R1 ≤ R̄(δ1) ≤ R̄(R1/0.161),

and R1 ≤ 0.0663 by the linear programming bound.
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