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Abstract. A projective multiset is a collection of projective points, which are not
necessarily distinct. A linear code can be represented as a projective multiset, by
taking the columns of a generator matrix as projective points. Projective multisets
have proved very powerful in the study of generalised Hamming weights. In this
paper we study relations between a code and its dual.

1 Background

Alinear code is a normed space and the weights (or norms) of codewords are crucial for
the code’s performance. One of the most important parameters of a code is the minimum
distance or minimum weight of a codeword.

The concept of weights can be generalised to subcodes or even arbitrary subsets of
the code. (This is often called support weights or support sizes.) One of the key papers
is [Weid1l], where Wei defined theth generalised Hamming weight to be the least
weight of ar-dimensional subcode. After Wei's work, we have seen many attempts to
determine the generalised Hamming weights ffiedent classes of codes.

Weights are alpha and omega for codes. Yet we know very little about the weight
structure of most useful codes. The generalised Hamming weights give some infor-
mation, and several practical applications are known, including finding bounds on the
trellis complexity [EKTT93For94]. Still they do not fully answer our questions.

Several other parameters describing weights of subcodes have been introduced, and
they can perhabs contribute to understanding the structure of linear codes. The support
weight distribution appeared as early as 1977in [HKM77]. The chain condition from
[WY93] have received a lot of attention. Chen and Klgve [CKOT,CK99] introduded the
greedy weights, inspired by a set of parameters from [CEZ99].

It is well known that a code and its dual are closely related. Klgve [Klg92] has
generalised the MacWilliams identities to give a relation for the support weight distri-
butions. Wei [Wei91] found a simple relation between the weight hierarchies of a code
and its dual. We will find a similar result for the greedy weights.

We consider a linearn[ k] code C. We usually define a linear code by giving
the generator matrixG. The rows ofG make a basis foC, and as such they are
much studied. Many works consider the columns instead. This gives rise fwdhe
jective multiset§DS98]. The weight hierarchy is easily recognised in this representa-
tion [HKY92,TV95]. Other terms for projective multisets include projective systems
[M795] and value assignmentsJCK97].



There are at least two ways to develop the correspondence between codes and multi-
sets. Most coding theorists will probably just take the columns of some generator matrix
(e.g. [HKY92[CK9Y]). Some mathematicians (e/0_D$S98,TV95]) develop the projec-
tive multisets abstractly. They take the elements to be the coordinate fordisand
get a multiset on the dual space®f(this isnot the dual code). Hence their argument
does not depend on the (non-unique) generator matigx of

We will need the abstract approach for our results, but we will try to carefully ex-
plain the connections between the two approaches, in the hope to reach more readers.
For the interested reader, we refer to a more thorough reporf {Sch01a], where we use
the present techniques to address some other problems, including support weight distri-
butions, in addition to the present results.

2 Definitions and Notation

2.1 \ectors, Codes, and Multisets

A multiset is a collection of elements, which are not necessarily distinct. More formally,
we define a multiset on a setSasamap : S — {0,1,2,...}. The numbey(s) is the
number of occurences afin the collectiony. The mapy is always extended to the
power set ofS,

(8= r(s), vSCS

seS’

The numbery(s), wheres € S or s C S, is called the value of. The size ofy is the
valuey(.S).

We will be concerned with multisets of vectors. We will always keep the informal
view of y as a collection in mind.

We consider a fixed finite fiel& with ¢ elements. A message word isketuple
over F, while a codeword is an-tuple overF. Let M be a vector space of dimension
k (the message space), avida vector space of dimensian(the channel space). The
generator matrixz gives a linear, injective transformati@h: M — V, and the cod€
is simply the image undeg.

As vector spaced/ andC are clearly isomorphic. For every message wuordhere
is a unique codeword= mG.

A codeword ¢1,¢2, ..., ¢,) =MG is given by the value; in each coordinate position
i. If we knowm, we obtain this value as the inner producthofand theith columng;
of G, i.e.

k
¢i=0i-m= ijgi,j: where g =(gi.1.8i2.---. 8ik). )
Jj=1
and m=(my,my,..., my).
The columngy; are elements ofl. These vectors are not necessarily distinct, so they

make a multiset
yvce: M- {0212...}.



If we reorder the columns aff, we get an equivalent code. Henge definesC up to
equivalence. If we replace a column with a proportional vector, we also get an equiv-
alent code. Therefore many papers consigeas a multiset on the projective space
P(M), and a projective multiset will also define the code up to equivalence.

We say that two multisetsandy’ on M are equivalent if’ = y o ¢ for some auto-
morphismg on M. Such an automorphism is given By, g+~ gA whereA is a square
matrix of full rank. Replacing all thg; by g;A in (@) is equivalent to replacinm by
Am. In other words, equivalent multisets giveéfdrent encoding, but they give the same
code. This is an important observation, because it implies that the coordinate system on
M is not essential.

Now we seek a way to represent the elementgads vectors oV .

Let b, be theith coordinate vector d¥, that is the vector with 1 in positiohand 0
in all other positions. The set of all coordinate vectors is denoted by

If we know the codeword corresponding ton, theith coordinate position; is given
as the inner product df; andc.

n
ci=b;-c= chbi,j’ where b; = (bi’]_, bi‘2 ..... bi,k): (2)
j=1
and c=(c1.c2,..., k).

We note thab; takes the role ofj;, andc takes the role ofn from ().

However,b; is not the only vector oV with this property. In fact, for any vector
¢ € Ct, we have p; +C) - ¢ = ¢;. Therefore, we can consider the vedipas the coset
b; + C* of C+. The set of such cosets is usually dendtegd*, and it is a vector space
of dimension

dimV/C* = dimV —dimC* = n— (n—k) = k = dimM.

HenceM =V /C* as vector spaces. Obvioudly+ C+ corresponds tg;.

We lety : V — V/C* be the natural endomorphism, ife: g~ g+C*. This map
is not injective, so ifS C V, it is reasonable to view the imagg.S) as a multiset. Our
analysis gives this lemma.

Lemma 1. A codeC c V is given by the vector multisgt := u(3) onV/C+ =M.

Given a collections1, s2, ..., sm} of vectors and/or subsets of a vector spdceve
write (s1,s2,..., sm) for its span. In other word&g, so, . . ., sm) is the intersection of all
subspaces containing, s2, ..., Spme

2.2 Weights

We define the support(c) of c € C to be the set of coordinate positions not equal to
zero, that is
x(@©):={i|c;#0}, wherec=(c1,c2,..., Cn)-



The support of a subsétc C is

2(8) = x(©).

ceS

The weight (or support size)(sS) is the cardinality ofy(S). Theith minimum support
weightd;(C) is the smallest weight of andimensional subcodB®; c C. The subcode

D; will be called a minimuni-subcode. The weight hierarchy©fis (d1(C), d2(C), ..., di (0)).
The following Lemma was proved inTHKY92], and the remark is a simple consequence
of the proof.

Lemma 2. There is a one-to-one correspondence between subdode€’ of dimen-
sionr and subspaces ¢ M of codimensiom, such thaty¢(U) = n—w(D).

Remark 1.Consider two subcodd’; andD», and the corresponding subspatesand
U,. We have thaD; C D5 is equivalent withU, C Us.

We defined;_,(y¢) such that: —d;_,.(y¢) is the largest value of anspacell, C
PG(k —1,¢q). From Lemmd]2 we get this corollary.

Corollary 1. If Cis a linear code angc is the corresponding multiset, thef(yc) =
di(C).

Definition 1. We say that a code ishainedif there is a chainD= Do c D; C ... C
D, = C, where eachD; is a minimumi-subcode of.

In terms of vector systems, the chain of subcodes corresponds to a chain of maxi-
mum value subspaces by rem@rk 1. Thieglence sequencéy s, .. ., bk-1) is defined
by é; = d_; —d;-1—;, and is occasionally more convenient than the weight hierarchy.

2.3 Submultisets

Viewing the multisety as a collection, we probably have an intuitive notion of a sub-
multiset. A submultisey’ C y is a multiset with the property that(x) < y(x) for all
X.

If y is a multiset on some vector spa¢ewe define a special kind of submultiset,
namely the cross-sections. lf C V is a subspace, then the cross-sectign is the
multiset defined by|y (x) = y(x) for x € U, andy|y (x) = O otherwise.

If U has dimension, we cally|y anr-dimensional cross-section. In some cases
it is easier to deal with cross-sections and their sizes, than with subspaces and their
values. In Lemmd]2, we can consider the cross-segti¢im rather than the subspace
U. In particular, we have that—d,_,(y¢) is the size of the largestdimensional cross-
section ofyc.



2.4 Duality

Consider a cod& c V and its orthogonal cod€+ c V. Write (dy,..., d;) for the
weight hierarchy of”, and @f ..... dj_k) for the weight hierarchy of*. Let B be the
set of coordinate vectors f&f, and lety be the natural endomorphism,

u: V-Vv/Cct
UiV v+ CL

According to Lemma]1, the vector multiset corresponding t@s yc = u(B).

Let B ¢ B. Thenu(B) is a submultiset of¢. Every submultiset of¢ is obtained
this way. Obviously dimB) = #B. Let D := (B)nC* be the largest subcode 6f*
contained in(B). ThenD is the kernel ofu| gy, the restriction ofx to (B). Hence

dim(u(B)) = dim(B) —dim D. 3)

Clearly #B > w(D).

With regard to the problem of support weights, we are not interested in arbitrary
submultisets of . We are only interested in cross-sections. Therefore, we ask when
u(B) is a cross-section qgf(/3). This is of course the case if and onlyifB) equals the
cross-sectiom(B)|u(s))-

LetU c V/C* be a subspace. We hauéB)|y = u(B), whereB = {b € B | u(b) €
U}. Hence we havei(B) = u(B)|up)) if and only if there exists no poirtt € B\ B
such thatu(b) € (u(B)).

It follows from (3) that a large cross-sectigi{B) of a given dimension, must be
such that B) contains a large subcode 6f of sufficiently small weight.

Define for any subcod® c C+,

p(D) := {b: | x € (D)} C B.

Obviously (D) is the smallest subset @ such thatD is contained in its span. It
follows from the above argument that i is a minimum subcode and(3(D)) is a
cross-section, thep(p(D)) is a maximum cross-section far. Thus we are lead to the
following two lemmas.

Lemma3. If n—d, = d,.l, B C B, and#B = n—d,, thenu(B) is a cross-section of
maximum size and codimensieif and only B = g(D;) for some minimunt+subcode
D; C CJ'.

Lemma 4. Letr be an arbitrary numbef) < r <n—k. Leti be such thatiil <n—d,<

dl.jl, and letD; c C* be a minimuni-subcode. Thep((B)) is a maximunr-subspace

for any B ¢ B such thatD; c (B) and#B =n—d,.

As an example of our technique, we include two old results from TVW/ei9T,WY93],
with new proofs based on the argument above.

Proposition 1 (Wei 1991).The weight sets
{d1,d.....d¢} and {n+1-dj.n+1l-dy,...n+1-dr }

are disjoint, and their union i$1,2,...,n}.



Proof. Suppose for a contradiction thét=n—s anddj = s+ 1 for somei, j, ands.

Let D; c C* be a minimuny-subcode. LeB; C B such thay(B;) is a maximum cross-
section of codimension We have #(D;) = #B; + 1 and thus dimB;) nC* < j. Hence
dimu(B;) > dimu(#(D;)). Thusu(B;) cannot be maximum cross-section, contrary to
assumption.

Proposition 2 (Wei and Yang 1993)If a C is a chained code, then sods", and vice
versa.

Proof. Supposec+ is a chained code. Let
{(0)=DpcD;Cc...cDy=C*
be a chain of subcodes of minimum weight. Choose a coordinate ordering, such that
x(D)=1{12....d"}, Vi

Foreachr =1,2,..., n, let B, C B be the set of the first coordinate vectors. By our
argumentu(B,) is a cross-section of maximum size exceptif= r + 1 for somei;
in which case there is no cross-section of maximum sizerael@ments. Obviously
u(B,) C u(By+1) forall r.

3 Greedy Weights

3.1 Definitions

Definition 2 (Greedy r-subcode).A (bottom-up) greedg¢-subcode is a minimum 1-
subcode. A (bottom-up) greedysubcodey > 2, is anyr-dimensional subcode con-
taining a (bottom-up) greedf — 1)-subcode, such that no other such code has lower
weight.

Definition 3 (Greedy subspace)Given a vector multiset, a (bottom-up) greedy hy-
perplane is a hyperplane of maximum value. A (bottom-up) greedy space of codimen-
sionr, r > 1, is a subspace of codimensierontained in a (bottom-up) greedy space

of codimensiom — 1, such that no other such subspace has higher value.

A greedyr-subcode corresponds to a greedy subspace of codimenséml the
r-th greedy weight may be defined from either, as follows.

Definition 4 (Greedy weights).Therth (bottom-up) greedy weight is the weight of a
(bottom-up) greedy-subcode. For a vector multiset;- e, is the value of a (bottom-up)
greedy space of codimensien

Remark 2.We have obviously thad; = e; andd, = e, for any k-dimensional code.
For most codes; > d, [CEZ99]. The chain condition is satisfied if and onlyjf= d,
for all r.

We introduce a new set of parameters, the top-down greedy weights. It is in a sense
the dual of the greedy weights, and we will see later on that top-down greedy weights
can be computed from the greedy weights of the orthogonal code, and vice versa.



Definition 5 (Top-Down Greedy Subspace)A top-down greedy 0-space of a vector
multiset is{0}. A top-down greedy-space is anr-space containing a top-down greedy
(r — 1)-subspace such that no other such subspace has higher value.

Definition 6 (Top-Down Greedy Weights).The r-th top-down greedy weighd, is
n—yc(IT), wherell is a top-down greedy subspace of codimension

Remark 3.The top-down greedy weights share many properties with the (bottom-up)
greedy weights. For all codes 3 d,.. The chain condition holds if and only ¢ = d,
for all . In generale,” may be equal to, greater than, or less than

We will occasionally speak of (top-down) greedy cross-sections, which igjlist
for some (top-down) greedy spabe

A I C

y(p) =|for

0 pe(A B.ON(A D}, pe (F.H1,J)

1 pe(B,F)\{B,F.H},pe (G, I)\{G,H,I},p=D
3

2

p=C
otherwise

Fig. 1. Case B, Construction 1 from_[CK96].

Example 1. We take an example of a code from [CK96] (Case B). The projective mul-
tiset is presented in Fif} 1. A chain of greedy subspaces is

Fc{(AyC(A L)C{(A B C)cPG(4yq),
and a chain of top-down greedy subspaces is

#c(C)c(C,D)cC(AC D)cPG(4q).

In the binary case, we get greedy weights6(9,12), and top-down greedy weights
(3,6,10,12). The weight hierarchy is (8,9,12).



3.2 Basic properties

Theorem 1 (Monotonicity). If (e1,e2,..., ex) are greedy weights for some codg
then0 =ep < e1 < ez < ... < e. Similarily, if (é1,¢e2,..., ¢;) are top-down greedy
weights for some codg, then0=¢p<e1<eéa2< ... <.

Proof. Let
{Oy=IgcIIL,C...CIl; =M,

be a chain of greedy subspaces. We are going to showdhgt contains more points
thanyc|p,_, for all i. It is suficient to show thagc| 7, contains a set of points spanning
11;.

Sinceyc is non-degenerate, it contains a set of points spanhipgSuppose that
yclm, contains a set of points spannif.. ConsiderIT,_;. Suppose difyc|m,_;) <
r— 1. Obviously there is a poink € yc|m, — vclm,_,- Hence we can replacH,_1 by
(rclm,_,.x) and get a subspadé’_, C II, with larger value. This contradicts the as-
sumption thatll,_1 is a greedy subspace.

We can replace thél; with a chain of top-down greedy subspaces, and repeat the
proof to prove the second statement of the lemma.

Monotonicity also holds for the weight hierarchy by a similar argument [V/ei91].

3.3 Duality

Lemma 5. Suppose; ;1 > ¢; + 1 where0<i <k, and defines :=n—e¢; +i—k. Then
U is a top-down greedy cross-section of codimensidmand only ifU = u(B(Dy)) for
some greedy-subcodeD, C C.

Proof. Let i be the largest value of< k — 1 such thak;y; > ¢; + 1. Thens; =1 for
0<j<k-1-(i+1).Itfollows that any subse®; of j < k —1—i elements, gives rise
to a top-down greedy cross-sectip(B;) of dimensionj (and sizej). The codimension
of such au(B;) isk—j>i+1.

Henceu(By_7) is a top-down greedy cross-section of codimensjdfand only if it
is a maximum value cross-section of codimensidtence, foii = i, the lemma follows
from LemmaB. _

Supposez,+1 > €, + 1, and assume the lemma holds foriall > i > m. We will
prove the lemma by induction. Define

ji=max{j>ml|éj—ep1=j—(m+1)}.

Clearly,éjy1—¢; > 1.

Now consider a top-down greedy subspa¢®8) of codimensionn, whereB C B.
Clearly there isB’ ¢ B such thatu(B’) is a top-down greedy subspace of codimension
Jj- By the induction hypothesif®’ = g(D,) for some greedy-subcodeD, c C+ where
r=n—k—eé;+j. Also,

#B' =w(D,) =e¢f =n—¢;.

Note that we can make top-down greedy cross-sections of codimensanm <
x < j by addingj — x random elements,, to B'. This implies also that there cannot be



a subcodeD, .1 of dimensionr + 1 such thatD, C D,;1 € C andw(D,+1) < w(D,) +
1+ j—x. Hence

e 2n—¢i+1+j—m. (4)

Let B” = Bx_(nt1) C B3 be such thaj(B”) is a top-down greedy cross-section of
codimensionn + 1 with B’ ¢ B” c B. Note thatD, = (B")nC*.
Let
7 =H#B—#B" = (n—&y) — (n—Epnt1) = Emy1—Em.

Write D := (B)nC*. Since dimu(B) —dimu(B") = 1, we must haveB = p(D), and
there must be a chain aefsubcodes

Dr C Dr+1 C Dr+2 Cc...C Dr+z_1 =D

whereD; has dimensionfor r <i <r+zandw(D;) =w(Djt1)—1forr<i<r+z-—2.
By the bound [[4), we get

L

w(Di)=n—¢é;j+1+j—m+i—r—1l=e;.
And in particular

w(D) =w(Dyy-1)=n—ej+j—m+z—-1= erl_'_z_l.
It remains to show that=r + z — 1 (wheres is given in the lemma). Consider

r+z-=1-s=(m—-k—¢e;+j)+@Emr1—€en)—1—(n—k—¢,+m)
=j—¢j+eu1—(m+1)=0,

by the definition ofj.
Corollary 2. If i ands are as given in Lemm@ 5, thety = n—¢;.

Theorem 2 (Duality). Let (eq, .. .ex) be the greedy weight hierarchy of a co@leand
(Ef ..... & ,) the top-down greedy weight hierarchies f6t. Then

{ér.eo,..., ¢r} and {n+1—ef,n+1—e§ ..... n+1—ej_k}
are disjoint sets whose union{4,...n}.

Proof. Let iy < i < ... be the values of for which é¢; > ¢;_1. Going to the proof of
Lemma[b, withm = i, we getj = i,41. The proof showed that— &, +1 # e for all s,
forall y, i, <y <ixy1. This holds for allx, hence the theorem.
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