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Abstract. A projective multiset is a collection of projective points, which are not
necessarily distinct. A linear code can be represented as a projective multiset, by
taking the columns of a generator matrix as projective points. Projective multisets
have proved very powerful in the study of generalised Hamming weights. In this
paper we study relations between a code and its dual.

1 Background

A linear code is a normed space and the weights (or norms) of codewords are crucial for
the code’s performance. One of the most important parameters of a code is the minimum
distance or minimum weight of a codeword.

The concept of weights can be generalised to subcodes or even arbitrary subsets of
the code. (This is often called support weights or support sizes.) One of the key papers
is [Wei91], where Wei defined therth generalised Hamming weight to be the least
weight of ar-dimensional subcode. After Wei’s work, we have seen many attempts to
determine the generalised Hamming weights of different classes of codes.

Weights are alpha and omega for codes. Yet we know very little about the weight
structure of most useful codes. The generalised Hamming weights give some infor-
mation, and several practical applications are known, including finding bounds on the
trellis complexity [FKLT93,For94]. Still they do not fully answer our questions.

Several other parameters describing weights of subcodes have been introduced, and
they can perhabs contribute to understanding the structure of linear codes. The support
weight distribution appeared as early as 1977 in [HKM77]. The chain condition from
[WY93] have received a lot of attention. Chen and Kløve [CK01,CK99] introduded the
greedy weights, inspired by a set of parameters from [CEZ99].

It is well known that a code and its dual are closely related. Kløve [Klø92] has
generalised the MacWilliams identities to give a relation for the support weight distri-
butions. Wei [Wei91] found a simple relation between the weight hierarchies of a code
and its dual. We will find a similar result for the greedy weights.

We consider a linear [n,k] code C. We usually define a linear code by giving
the generator matrixG. The rows ofG make a basis forC, and as such they are
much studied. Many works consider the columns instead. This gives rise to thepro-
jective multisets[DS98]. The weight hierarchy is easily recognised in this representa-
tion [HKY92,TV95]. Other terms for projective multisets include projective systems
[TV95] and value assignments [CK97].



There are at least two ways to develop the correspondence between codes and multi-
sets. Most coding theorists will probably just take the columns of some generator matrix
(e.g. [HKY92,CK97]). Some mathematicians (e.g. [DS98,TV95]) develop the projec-
tive multisets abstractly. They take the elements to be the coordinate forms onC, and
get a multiset on the dual space ofC (this isnot the dual code). Hence their argument
does not depend on the (non-unique) generator matrix ofC.

We will need the abstract approach for our results, but we will try to carefully ex-
plain the connections between the two approaches, in the hope to reach more readers.
For the interested reader, we refer to a more thorough report [Sch01a], where we use
the present techniques to address some other problems, including support weight distri-
butions, in addition to the present results.

2 Definitions and Notation

2.1 Vectors, Codes, and Multisets

A multiset is a collection of elements, which are not necessarily distinct. More formally,
we define a multisetγ on a setS as a mapγ : S → {0,1,2, . . .}. The numberγ(s) is the
number of occurences ofs in the collectionγ. The mapγ is always extended to the
power set ofS,

γ(S ′) =
∑

s∈S′
γ(s), ∀S ′ ⊂ S.

The numberγ(s), wheres ∈ S or s ⊂ S, is called the value ofs. The size ofγ is the
valueγ(S).

We will be concerned with multisets of vectors. We will always keep the informal
view of γ as a collection in mind.

We consider a fixed finite fieldF with q elements. A message word is ak-tuple
overF, while a codeword is ann-tuple overF. Let M be a vector space of dimension
k (the message space), andV a vector space of dimensionn (the channel space). The
generator matrixG gives a linear, injective transformationG : M → V, and the codeC
is simply the image underG.

As vector spaces,M andC are clearly isomorphic. For every message wordm, there
is a unique codewordc= mG.

A codeword (c1, c2, . . . , cn) =mG is given by the valueci in each coordinate position
i. If we know m, we obtain this value as the inner product ofm and theith columngi
of G, i.e.

ci = gi ·m =
k
∑

j=1

mjgi,j, where gi = (gi,1,gi,2, . . . ,gi,k), (1)

and m = (m1,m2, . . . ,mk).

The columnsgi are elements ofM . These vectors are not necessarily distinct, so they
make a multiset

γC : M → {0,1,2, . . .}.



If we reorder the columns ofG, we get an equivalent code. HenceγC definesC up to
equivalence. If we replace a column with a proportional vector, we also get an equiv-
alent code. Therefore many papers considerγC as a multiset on the projective space
P(M ), and a projective multiset will also define the code up to equivalence.

We say that two multisetsγ andγ ′ on M are equivalent ifγ ′ = γ ◦φ for some auto-
morphismφ onM . Such an automorphism is given byφ : g 7→ gA whereA is a square
matrix of full rank. Replacing all thegi by giA in (1) is equivalent to replacingm by
Am. In other words, equivalent multisets give different encoding, but they give the same
code. This is an important observation, because it implies that the coordinate system on
M is not essential.

Now we seek a way to represent the elements ofγC as vectors ofV.
Let bi be theith coordinate vector ofV, that is the vector with 1 in positioni and 0

in all other positions. The set of all coordinate vectors is denoted by

B := {b1,b2, . . . ,bn}.

If we know the codewordc corresponding tom, theith coordinate positionci is given
as the inner product ofbi andc.

ci = bi ·c=
n
∑

j=1

cjbi,j, where bi = (bi,1, bi,2, . . . , bi,k), (2)

and c= (c1, c2, . . . , ck).

We note thatbi takes the role ofgi, andc takes the role ofm from (1).
However,bi is not the only vector ofV with this property. In fact, for any vector

c′ ∈ C⊥, we have (bi+c′) ·c= ci. Therefore, we can consider the vectorbi as the coset
bi+C⊥ of C⊥. The set of such cosets is usually denotedV/C⊥, and it is a vector space
of dimension

dimV/C⊥ = dimV−dimC⊥ = n− (n−k) = k = dimM .

HenceM ∼= V/C⊥ as vector spaces. Obviouslybi+C⊥ corresponds togi.
We letµ : V→ V/C⊥ be the natural endomorphism, i.e.µ : g 7→ g+C⊥. This map

is not injective, so ifS ⊂ V, it is reasonable to view the imageµ(S) as a multiset. Our
analysis gives this lemma.

Lemma 1. A codeC ⊂ V is given by the vector multisetγC := µ(B) onV/C⊥ ∼= M .

Given a collection{s1, s2, . . . , sm} of vectors and/or subsets of a vector spaceV, we
write 〈s1, s2, . . . , sm〉 for its span. In other words〈s1, s2, . . . , sm〉 is the intersection of all
subspaces containings1, s2, . . . , sm.

2.2 Weights

We define the supportχ(c) of c ∈ C to be the set of coordinate positions not equal to
zero, that is

χ(c) := {i | ci 6= 0}, wherec= (c1, c2, . . . , cn).



The support of a subsetS ⊂ C is

χ(S) =
⋃

c∈S

χ(c).

The weight (or support size)w(S) is the cardinality ofχ(S). Theith minimum support
weightdi(C) is the smallest weight of ani-dimensional subcodeDi ⊂ C. The subcode
Di will be called a minimumi-subcode. The weight hierarchy ofC is (d1(C),d2(C), . . . ,dk(C)).
The following Lemma was proved in [HKY92], and the remark is a simple consequence
of the proof.

Lemma 2. There is a one-to-one correspondence between subcodesD ⊂ C of dimen-
sionr and subspacesU ⊂M of codimensionr, such thatγC (U ) = n−w(D).

Remark 1.Consider two subcodesD1 andD2, and the corresponding subspacesU1 and
U2. We have thatD1 ⊂D2 is equivalent withU2 ⊂ U1.

We definedk−r(γC ) such thatn−dk−r(γC ) is the largest value of anr-spaceΠr ⊂
PG(k−1, q). From Lemma 2 we get this corollary.

Corollary 1. If C is a linear code andγC is the corresponding multiset, thendi(γC ) =
di(C).

Definition 1. We say that a code ischainedif there is a chain0 = D0 ⊂ D1 ⊂ . . . ⊂
Dk = C, where eachDi is a minimumi-subcode ofC.

In terms of vector systems, the chain of subcodes corresponds to a chain of maxi-
mum value subspaces by remark 1. The difference sequence (δ0, δ1, . . . , δk−1) is defined
by δi = dk−i−dk−1−i, and is occasionally more convenient than the weight hierarchy.

2.3 Submultisets

Viewing the multisetγ as a collection, we probably have an intuitive notion of a sub-
multiset. A submultisetγ ′ ⊂ γ is a multiset with the property thatγ ′(x) ≤ γ(x) for all
x.

If γ is a multiset on some vector spaceV, we define a special kind of submultiset,
namely the cross-sections. IfU ⊂ V is a subspace, then the cross-sectionγ|U is the
multiset defined byγ|U (x) = γ(x) for x ∈ U , andγ|U (x) = 0 otherwise.

If U has dimensionr, we call γ|U an r-dimensional cross-section. In some cases
it is easier to deal with cross-sections and their sizes, than with subspaces and their
values. In Lemma 2, we can consider the cross-sectionγC |U rather than the subspace
U . In particular, we have thatn−dk−r(γC ) is the size of the largestr-dimensional cross-
section ofγC .



2.4 Duality

Consider a codeC ⊂ V and its orthogonal codeC⊥ ⊂ V. Write (d1, . . . ,dk) for the
weight hierarchy ofC, and (d⊥1 , . . . ,d

⊥
n−k) for the weight hierarchy ofC⊥. LetB be the

set of coordinate vectors forV, and letµ be the natural endomorphism,

µ : V→ V/C⊥,

µ : v 7→ v+C⊥.

According to Lemma 1, the vector multiset corresponding toC, is γC := µ(B).
Let B ⊂ B. Thenµ(B) is a submultiset ofγC . Every submultiset ofγC is obtained

this way. Obviously dim〈B〉 = #B. Let D := 〈B〉 ∩C⊥ be the largest subcode ofC⊥

contained in〈B〉. ThenD is the kernel ofµ|〈B〉, the restriction ofµ to 〈B〉. Hence

dim〈µ(B)〉 = dim〈B〉−dimD. (3)

Clearly #B ≥ w(D).
With regard to the problem of support weights, we are not interested in arbitrary

submultisets ofγC . We are only interested in cross-sections. Therefore, we ask when
µ(B) is a cross-section ofµ(B). This is of course the case if and only ifµ(B) equals the
cross-sectionµ(B)|〈µ(B)〉.

LetU ⊂ V/C⊥ be a subspace. We haveµ(B)|U = µ(B), whereB = {b ∈ B | µ(b) ∈
U}. Hence we haveµ(B) = µ(B)|〈µ(B)〉 if and only if there exists no pointb ∈ B\B
such thatµ(b) ∈ 〈µ(B)〉.

It follows from (3) that a large cross-sectionµ(B) of a given dimension, must be
such that〈B〉 contains a large subcode ofC⊥ of sufficiently small weight.

Define for any subcodeD ⊂ C⊥,

β(D) := {bx | x ∈ χ(D)} ⊂ B.

Obviously β(D) is the smallest subset ofB such thatD is contained in its span. It
follows from the above argument that ifD is a minimum subcode andµ(β(D)) is a
cross-section, thenµ(β(D)) is a maximum cross-section forC. Thus we are lead to the
following two lemmas.

Lemma 3. If n− dr = d⊥i , B ⊂ B, and #B = n− dr, thenµ(B) is a cross-section of
maximum size and codimensionr if and onlyB = β(Di) for some minimumi-subcode
Di ⊂ C⊥.

Lemma 4. Letr be an arbitrary number,0< r ≤ n−k. Leti be such thatd⊥i ≤ n−dr <
d⊥i+1, and letDi ⊂ C⊥ be a minimumi-subcode. Thenµ(〈B〉) is a maximumr-subspace
for anyB ⊂ B such thatDi ⊂ 〈B〉 and#B = n−dr.

As an example of our technique, we include two old results from [Wei91,WY93],
with new proofs based on the argument above.

Proposition 1 (Wei 1991).The weight sets

{d1,d2, . . . ,dk} and {n+1−d⊥1 ,n+1−d⊥2 , . . . ,n+1−d⊥n−k}

are disjoint, and their union is{1,2, . . . ,n}.



Proof. Suppose for a contradiction thatdi = n− s andd⊥j = s+1 for somei, j, ands.
LetDj ⊂C⊥ be a minimumj-subcode. LetBi ⊂B such thatµ(Bi) is a maximum cross-
section of codimensioni. We have #β(Dj) = #Bi+1 and thus dim〈Bi〉∩C⊥ < j. Hence
dimµ(Bi) ≥ dimµ(β(Dj)). Thusµ(Bi) cannot be maximum cross-section, contrary to
assumption.

Proposition 2 (Wei and Yang 1993).If a C is a chained code, then so isC⊥, and vice
versa.

Proof. SupposeC⊥ is a chained code. Let

{0} =D0 ⊂D1 ⊂ . . . ⊂Dk = C⊥

be a chain of subcodes of minimum weight. Choose a coordinate ordering, such that

χ(Di) = {1,2, . . . ,d
⊥
i }, ∀i.

For eachr = 1,2, . . . ,n, let Br ⊂ B be the set of ther first coordinate vectors. By our
argument,µ(Br) is a cross-section of maximum size except ifd⊥i = r+1 for somei;
in which case there is no cross-section of maximum size andr elements. Obviously
µ(Br) ⊂ µ(Br+1) for all r.

3 Greedy Weights

3.1 Definitions

Definition 2 (Greedy r-subcode).A (bottom-up) greedy1-subcode is a minimum 1-
subcode. A (bottom-up) greedyr-subcode,r ≥ 2, is anyr-dimensional subcode con-
taining a (bottom-up) greedy(r−1)-subcode, such that no other such code has lower
weight.

Definition 3 (Greedy subspace).Given a vector multisetγ, a (bottom-up) greedy hy-
perplane is a hyperplane of maximum value. A (bottom-up) greedy space of codimen-
sionr, r ≥ 1, is a subspace of codimensionr contained in a (bottom-up) greedy space
of codimensionr−1, such that no other such subspace has higher value.

A greedyr-subcode corresponds to a greedy subspace of codimensionr, and the
r-th greedy weight may be defined from either, as follows.

Definition 4 (Greedy weights).Therth (bottom-up) greedy weighter is the weight of a
(bottom-up) greedyr-subcode. For a vector multiset,n−er is the value of a (bottom-up)
greedy space of codimensionr.

Remark 2.We have obviously thatd1 = e1 anddk = ek, for anyk-dimensional code.
For most codese2 > d2 [CEZ99]. The chain condition is satisfied if and only ifer = dr
for all r.

We introduce a new set of parameters, the top-down greedy weights. It is in a sense
the dual of the greedy weights, and we will see later on that top-down greedy weights
can be computed from the greedy weights of the orthogonal code, and vice versa.



Definition 5 (Top-Down Greedy Subspace).A top-down greedy 0-space of a vector
multiset is{0}. A top-down greedyr-space is anr-space containing a top-down greedy
(r−1)-subspace such that no other such subspace has higher value.

Definition 6 (Top-Down Greedy Weights).The r-th top-down greedy weight̃er is
n− γC (Π), whereΠ is a top-down greedy subspace of codimensionr.

Remark 3.The top-down greedy weights share many properties with the (bottom-up)
greedy weights. For all codes ˜er ≥ dr. The chain condition holds if and only if ˜er = dr
for all r. In general, ˜er may be equal to, greater than, or less thaner.

We will occasionally speak of (top-down) greedy cross-sections, which is justγC |U
for some (top-down) greedy spaceU .
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γ(p) = for
0 p ∈ 〈A,B,C〉\{A,D}, p ∈ {F,H,I,J}
1 p ∈ 〈B,F 〉\{B,F,H}, p ∈ 〈G,I〉\{G,H,I}, p =D
3 p = C
2 otherwise

Fig. 1.Case B, Construction 1 from [CK96].

Example 1. We take an example of a code from [CK96] (Case B). The projective mul-
tiset is presented in Fig. 1. A chain of greedy subspaces is

∅ ⊂ 〈A〉 ⊂ 〈A,L〉 ⊂ 〈A,B,C〉 ⊂ PG(4, q),

and a chain of top-down greedy subspaces is

∅ ⊂ 〈C〉 ⊂ 〈C,D〉 ⊂ 〈A,C,D〉 ⊂ PG(4, q).

In the binary case, we get greedy weights (4,6,9,12), and top-down greedy weights
(3,6,10,12). The weight hierarchy is (3,6,9,12).



3.2 Basic properties

Theorem 1 (Monotonicity). If (e1, e2, . . . , ek) are greedy weights for some codeC,
then 0 = e0 < e1 < e2 < . . . < ek. Similarily, if (ẽ1, ẽ2, . . . , ẽk) are top-down greedy
weights for some codeC, then0= ẽ0 < ẽ1 < ẽ2 < . . . < ẽk.

Proof. Let
{0} =Π0 ⊂Π1 ⊂ . . . ⊂Πk = M ,

be a chain of greedy subspaces. We are going to show thatγC |Πi contains more points
thanγC |Πi−1 for all i. It is sufficient to show thatγC |Πi contains a set of points spanning
Πi.

SinceγC is non-degenerate, it contains a set of points spanningΠk. Suppose that
γC |Πr contains a set of points spanningΠr. ConsiderΠr−1. Suppose dim〈γC |Πr−1〉 <
r−1. Obviously there is a pointx ∈ γC |Πr − γC |Πr−1. Hence we can replaceΠr−1 by
〈γC |Πr−1,x〉 and get a subspaceΠ ′r−1 ⊂Πr with larger value. This contradicts the as-
sumption thatΠr−1 is a greedy subspace.

We can replace theΠi with a chain of top-down greedy subspaces, and repeat the
proof to prove the second statement of the lemma.

Monotonicity also holds for the weight hierarchy by a similar argument [Wei91].

3.3 Duality

Lemma 5. Supposẽei+1 > ẽi +1 where0≤ i ≤ k, and defines := n− ẽi + i−k. Then
U is a top-down greedy cross-section of codimensioni if and only ifU = µ(β(Ds)) for
some greedys-subcodeDs ⊂ C.

Proof. Let ī be the largest value ofi ≤ k− 1 such that ˜ei+1 > ẽi + 1. Thenδj = 1 for
0≤ j ≤ k−1− (ī+1). It follows that any subsetBj of j ≤ k−1− ī elements, gives rise
to a top-down greedy cross-sectionµ(Bj) of dimensionj (and sizej). The codimension
of such aµ(Bj) is k− j ≥ ī+1.

Henceµ(Bk−ī) is a top-down greedy cross-section of codimensionī, if and only if it
is a maximum value cross-section of codimensionī. Hence, fori= ī, the lemma follows
from Lemma 3.

Suppose ˜em+1 > ẽm +1, and assume the lemma holds for alli, ī ≥ i > m. We will
prove the lemma by induction. Define

j := max{j > m | ẽj − ẽm+1 = j− (m+1)}.

Clearly,ẽj+1− ẽj > 1.
Now consider a top-down greedy subspaceµ(B) of codimensionm, whereB ⊂ B.

Clearly there isB′ ⊂ B such thatµ(B′) is a top-down greedy subspace of codimension
j. By the induction hypothesis,B′ = β(Dr) for some greedyr-subcodeDr ⊂ C⊥ where
r = n−k− ẽj + j. Also,

#B′ = w(Dr) = e⊥r = n− ẽj.

Note that we can make top-down greedy cross-sections of codimensionx for m <
x ≤ j by addingj−x random elementsby toB′. This implies also that there cannot be



a subcodeDr+1 of dimensionr+1 such thatDr ⊂ Dr+1 ⊂ C andw(Dr+1) ≤ w(Dr)+
1+ j−x. Hence

e⊥r+1 ≥ n− ẽj +1+ j−m. (4)

Let B′′ = Bk−(m+1) ⊂ B be such thatµ(B′′) is a top-down greedy cross-section of
codimensionm+1 withB′ ⊂ B′′ ⊂ B. Note thatDr = 〈B′′〉∩C⊥.

Let
z := #B−#B′′ = (n− ẽm)− (n− ẽm+1) = ẽm+1− ẽm.

Write D := 〈B〉 ∩C⊥. Since dimµ(B)−dimµ(B′′) = 1, we must haveB = β(D), and
there must be a chain ofz subcodes

Dr ⊂Dr+1 ⊂Dr+2 ⊂ . . . ⊂Dr+z−1 =D

whereDi has dimensioni for r ≤ i < r+z andw(Di) = w(Di+1)−1 for r < i≤ r+z−2.
By the bound (4), we get

w(Di) = n− ẽj +1+ j−m+ i− r−1= e⊥i .

And in particular

w(D) = w(Dr+z−1) = n− ẽj + j−m+z−1= e⊥r+z−1.

It remains to show thats = r+z−1 (wheres is given in the lemma). Consider

r+z−1− s = (n−k− ẽj + j)+ (ẽm+1− ẽm)−1− (n−k− ẽm+m)

= j− ẽj + ẽm+1− (m+1)= 0,

by the definition ofj.

Corollary 2. If i ands are as given in Lemma 5, thene⊥s = n− ẽi.

Theorem 2 (Duality). Let (e1, . . . ek) be the greedy weight hierarchy of a codeC, and
(ẽ⊥1 , . . . , ẽ

⊥
n−k) the top-down greedy weight hierarchies forC⊥. Then

{ẽ1, ẽ2, . . . , ẽk} and {n+1− e⊥1 ,n+1− e⊥2 , . . . ,n+1− e⊥n−k}

are disjoint sets whose union is{1, . . .n}.

Proof. Let i1 < i2 < . . . be the values ofi for which ẽi > ẽi−1. Going to the proof of
Lemma 5, withm = ix, we getj = ix+1. The proof showed thatn− ẽy +1 6= e⊥s for all s,
for all y, ix ≤ y < ix+1. This holds for allx, hence the theorem.
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