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Abstract A pirate is a person who buys a legal copy of a copyrighted work and
who reproduces it to sell illegal copies. Artists and authors are worried as they
do not get the income which is legally theirs. It has been suggested to mark ev-
ery copy sold with a unique fingerprint, so that any unauthorised copy may be
traced back to the source and the pirate who bought it. The fingerprint must be
embedded in such a way that it cannot be destroyed. Two pirates who cooperate,
can compare their copies and they will find some bits which differ. These bits
must be part of the fingerprint, and when the pirates can see and change these
bits, they get an illegal copy with neither of their fingerprints. Collusion-secure
fingerprinting schemes are designed to trace at least one of the pirates in such a
collusion.
In this paper we prove that socalled (2,2)-separating codes often are collusion-
secure against two pirates. In particular, we consider the best known explicit
asymptotic construction of such codes, and prove that it is collusion-secure with
better rate than any previously known schemes.

1 Fingerprinting

Once upon a time, when computing logarithms was time consuming and tables of loga-
rithms expensive, publishers found they had to protect the tables against illegal copying.
They introduced tiny errors in the least significant digits to make every copy of the ta-
bles unique. In this way an illegal copy could be traced back to one legal original, and
the customer who had bought this copy could be prosecuted.

This technique, known as fingerprinting, has been suggested for digital data. Re-
search is going on within several fields to solve the various challenges involved. One
problem is the embedding. How can the copy be marked without distorting the data, and
without the users being able to change the fingerprint? We are not going to address this
problem any further, just state some assumptions about its solution. The problem we
are going to address is how to make the system resistant against a coalition of pirates.

A vendor holds the copyright to some work, it may be a sound recording, a digital
image, a literary text, or something else. A copy is a digital file which resembles the
work and has the same practical (and artistic) value. A user is a legal owner of a copy,
presumably bought from the vendor. A pirate is a user who makes and distributes illegal
copies of the work.

A fingerprint is a word (tuple) of symbols uniquely identifying a user. The set of
fingerprints is called an (n,M) codeC, wheren is the length of each word andM is the
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number of users (or fingerprints). We letd andm denote respectively the minimum and
maximum Hamming distance between two codewords, andδ = d/n is the normalised
minimum distance.

The fingerprint is supposed to be embedded into the copy in order to identify its
owner. The embedding of one symbol of the fingerprint is called a mark. We assume that
a user investigating a single copy is unable to locate or identify any mark, and therefore
cannot change any mark. A coalition of users however, can compare their copies, and
any difference between their copies must be a mark. The pirates can produce copies
with a false fingerprint, but every mark has to match at least one of the legal copies held
by the pirates. This is known as the marking assumption.

Let P be a coalition of pirates. Since each pirate is associated to a fingerprint, we
writeP ⊂C. A positioni is undetectable forP if all the elements ofP match in position
i. The feasible setF (P ) is the set of false fingerprint which may be produced byP , in
other words

F (P ) = {(c1, . . . , cn) : ∀i = 1, . . . ,n,∃(x1, . . . ,xn) ∈ P,st.ci = xi}.

Note thatP ⊂ F (P ). The elements ofF (P ) are often called descendants ofP .
The fingerprinting codeC is assumed to be publicly known, however, the vendor

uses a secret codeC ′ chosen uniformly at random from the ensemble of codes equiva-
lent toC. The codeword embedded in the copy is the codeword fromC ′ corresponding
to the codeword fromC associated with the user. In this way, it is impossible for the pi-
rates two know which coordinate position is corresponding to a given detectable mark,
and which code symbol corresponds to a given value of the mark.

2 The identifiable parent property

The goal in collusion-secure fingerprinting is to identify at least one pirate when discov-
ering a false fingerprint produced by a coalition of at mostt pirates. If this is possible,
we say that the code has thet-identifiable parent property (t-IPP).

LetPt(C) be the family of setsP ⊂ C of cardinality at mostt. LetPt(x) ⊂ Pt(C) be
the family of coalitions which could have producedx, i.e.

Pt(x) = {P ∈ Pt(C) : x ∈ F (P )}.

If the elements ofPt(x) has a non-empty intersection for anyx, thenC is t-IPP. The
following definition is equivalent, and standard.

Definition 1 (Identifiable parent property). A codeC is said to have thet-identifiable
parent property (t-IPP) if there is an algorithmA such that for everyP ∈ Pt(C) and
every vectorx ∈ F (P ), A(x) returns a member ofP .

The algorithmic issues are beyond the scope of this paper. As far as we are con-
serned, the algorithmA may be an exhaustive search throughPt(C).

Observe thatt-IPP implies (t− 1)-IPP. It is well-known that binary codes cannot
be even 2-IPP [BS98]. More generally the following proposition is well known in the
fingerprinting literature.



Proposition 1. Let t andq be integers. Ift < q, then there exist asymptotic families of
q-ary codes witht-IPP. If t ≥ q, there exists noq-ary code witht-IPP and more thant
codewords.

In order to get collusion-secure codes with more pirates, we use probabilistic fin-
gerprinting schemes. We allowA to have a certain error probabilityε. There are two
types of error: we call it afailure if A returns void and amistakeif A returns a word
which is not a member ofP . Mistakes is a threat to justice, as it causes innocent users
to be accused. If there is no probability of mistakes, the output ofA is always reliable,
but occasionally there is no output at all.

A t-IPP code withε-error (or (t, ε)-IPP) is defined as a code where the probability of
error isε. Failures may be turned into mistakes by picking a random codeword whenever
a failure should occur, and thus past literature rarely distinguish between failure and
mistake.

We define (t, ε)-UPP (undisputable parent property) to be a code where the algo-
rithm A has no risk of mistake and a probabilityε of failure. Obviously, (t, ε)-UPP is
stronger than (t, ε)-IPP.

We say that a wordx is t-identifiable if it can be traced back to one undisputable
parent, that is if

⋂

P∈Pt(x)

P 6= ∅.

The set oft-identifiable words is denotedIt(C).
When the pirates compare their copies, they findd′ detectable bits. This numberd′

is the Hamming distance between their two fingerprints. As long as the embedding is
kept secret by the vendor, it is impossible for the pirates to tell which detected mark
corresponds to which coordinate position in the code.

When they construct a false fingerprintx, they can only choose the distances =
d(a,x). Clearlyd(b,x) = d′ − d(a,x). The two pirates cannot be distinguished, so we
can assume thats ≤ d′/2. We calls the pirate strategy, and defineσ := s/n to be the
normalised strategy, wheren is the length of a fingerprint.

Once the strategy is chosen, a fingerprint is produced uniformly at random from a
set of 2

( s
d′
)

feasible words. (Ifd′ is even ands = d′/2, there are
(s
d

)

feasible words.)
There is a certain probabilityps(P ) that the produced false fingerprint is identifiable.
The pirates will obviously chooses to minimiseps(P ). The probability that the pirates
gets away with their forgery is 1−p(P ), wherep(P ) = mins ps(P ).

For simplicity, we assume that the pirates know which two codewords they posess.
This allows them to make a perfect minimisation ofps(P ), which might not be possible
in reality. Hence thep(P ) defined here is a lower bound on the true probability.

Theorem 1. A q-ary code cannot have(t, ε)-UPP for anyt > q andε < 1.

Proof. Consider a code and a coalition ofq+1 pirates. For each coordinate position,
there is at least one symbol which appears in at least two of the pirate codewords. Thus
the pirates has a feasible word which matches at least two pirates in each coordinate
position. Since this false fingerprint is feasible for any subset ofq pirates, none of the
pirates are undisputable parents.



Conjecture 1.There is an asymptotic family ofq-ary codes with non-zero rate and
(q,ε)-UPP whereε tends to zero.

3 Separating codes

Much of the fingerprinting literature has focused on properties which are related to,
but weaker than,t-IPP. The most important one of these properties is (t, t′)-separation.
Resently it was proved that (t, t)-separating codes can be used for constructing (t, ε)-IPP
codes [BBK01]. We shall see that some good (2,2)-separating codes are actually good
(2, ε)-IPP codes in themselves with better rates than the codes from [BBK01].

Definition 2 (Separating code).Let t = (t1, . . . , tz) be a tuple of natural numbers. A
sequence(T1, . . . ,Tz) of pairwise disjoint vector sets is called at-configuration if#Tj =
tj for all j. Such a configuration is separated if there is a positioni, such that for all
l 6= l′ every vector ofTl is different from every vector ofTl′ on positioni.

A code ist-separating (at-SS) if everyt-configuration is separated.

If ti = 1 for all i, thent-separation is equivalent toz-hashing. Forz= 2 there is a vast
literature, in particular on (2,1)- and (2,2)-SS, it dates back at least to ’69 [FGU69].
See [Sag94] for a survey.

If a codeC is not (t,1)-separating, there is a pirate coalitionT1 of t users who are
able to forge a fingerprintx which belongs to a user not member ofT1. To see this, just
let (T1,{x}) be a (t,1)-configuration which is not separated. We say thatx is framed by
T1, and (t,1)-SS are often calledt-frameproof codes in the fingerprinting literature.

If a code is (t, t)-separating, it means in fingerprinting terms, that two disjoint coali-
tionsT1,T2 ∈ Pt(C) cannot produce the same false fingerprint, i.e.F (T1)∩F (T2) = ∅.
These codes where calledt-secure frameproof in some early fingerprinting literature.

Definition 3 (Separating weights).Let (T1, . . . ,Tz) be at-configuration. The separat-
ing weightθt (T1; . . . ;Tz) is the number of positions where the configuration is sepa-
rated.

If C is an (n,M) code, its minimum separating weightθt is the least separating
weight for anyt-configuration fromC. The normalised separating weight isτt := θt/n.

Obviously, a code ist-separating if and only ifθt > 0.

Proposition 2. For a binary code, we haveθ2,1 ≥ d−m/2.

This result was found by Sagalovich [Sag65], but we include a proof for the reader’s
convenience.

Proof. Let (c′,c,a) be any three codewords. Since separating weights are invariant over
the ensemble of equivalent codes, we can by translation assume thatc′ = 0. We shall
find a lower bound on the separating weightsθ(0,c;a).

First we take (2,1)-separation. Let0, c, anda be rows of a matrix. There are three
types of columns; Type R is (001)T which are the ones giving separation, Type 0 is
(000)T, and Type I is (010)T and (011)T. Let vi be the number of columns of Typei.
We have thatθ(0,c;a) = vR andw(c) = vI .



Define
Σ := d(0,a)+d(c,a) = 2vR+ vI = 2θ(0,c;a)+w(c).

SinceΣ is the sum of two distances, we have

2d ≤ Σ ≤ 2m,

so
2θ(0,c;a) = Σ−w(c) ≥ 2d−m.

It has also be shown thatθ2,2 ≥ 2d−3m/2 in a similar way. A corollary is that if
δ > 3

4, thenθ2,2 is non-zero, and the code is (2,2)-separating.

Proposition 3. Let t be a tuple of natural numbers. IfC1 is aM ′-ary [n1,M] code with
separating weightθ′t , andC2 is a q-ary [n2,M

′] code with separating weightθ′′t , then
the concatenationC of the two codes is a[n,M] code withn = n1n2 and separating
weightθt ≥ θ′tθ

′′
t .

Proof. Let (T1, . . . ,Tz) be anyt-configuration fromC. Then there is a corresponding
t-configuration (T ′

1, . . . ,T
′
z) in C1, which is separated in at leastθ′t positions.

Now consider a single positioni, where (T ′
1, . . . ,T

′
z) is separated. Each symbol in

this position corresponds to a word inC2, so (T ′
1, . . . ,T

′
z) corresponds to a collection of

subsets (T ′′
1 , . . . ,T

′′
z ) in C2. Since (T ′

1, . . . ,T
′
z) is a separatedt-configuration, (T ′′

1 , . . . ,T
′′
z )

must also be a separatedt-configuration, and sinceC2 has separating weightθ′′t , it fol-
lows that (T ′′

1 , . . . ,T
′′
z ) is separated in at leastθ′′t positions.

We conclude that (T1, . . . ,Tz) is separated in at leastθ′tθ
′′
t positions, and since this

holds for anyt-configuration, the proposition follows.

Corollary 1. The concatenation of twot-SS is at-SS.

The current best constructible rate for asymptotic (2,2)-SS is 0.026. This was con-
structed in [CELS01] by concatenating an asymptotic code withδ > 3

4 with a small
inner code which had been explicitely confirmed to be (2,2)-separating. However,
Sagalovich [Sag94] had already given a different construction of (2,2)-SS with this
rate.

The outer code used in the construction is one due to Tsfasman. He showed in
[Tsf91], that there is an asymptotic class ofq-ary codes with rateR and minimum
distanceδ whenever

R+δ < 1− (
√
q−1)−1.

The inner code is the punctured dualC ′ of a two-error-correcting BCH code with
parameters [126,14,55]. This code was proven to be 3-wise intersecting in [CZ94],
a property which is equivalent to (2,2)-separation [BR80]. To see thatC ′ is (2,2)-
separating, we recall that the dual of 2-BCH has only two weights, 22t−2t and 22t+2t.
ConsequentlyC ′ hasd ≥ 22t−2t−1 andm ≤ 22t+2t, and

4d−3m ≥ 22t−7·2t−4,

which is greater than zero whenevert ≥ 3. Our codeC ′, hasm = 72, soθ2,1 ≥ 55−
72/2= 19.



The specific outer code shall haveq = 214, and since we requireδ ≈ 0.75, we get
R ≈ 1−127−1−0.75≈ 0.2421. The (2,1)-separating weight isτ2,1 ≥ 0.75−0.5= 0.25.
The concatenated codeC will have R ≈ 0.026, δ ≈ 0.3274, andτ2,1 ≥ 0.03770. As
mentioned, this construction is not new. The new result, which will be proved in the
next section, is thatC is (2, ε)-UPP whereε tends to 0 with increasingn.

4 Binary separating codes for fingerprinting

In the sequel, we assume a binary code. Letm(a,b,c) be the word obtained by majority
voting of the three vectorsa, b, andc. That is, in each positioni in m(a,b,c) contains
the symbol which occurs in positioni of at least two of the three vectorsa, b, andc.

Lemma 1. If C is an (n,M) (2,2)-SS, then for anyP = {a,b} ⊂ C, we have

F (P )\I2(C) = {m(a,b,c) : c∈ C\P},

and
#(F (P )\I2(C)) =M −2.

This result was pointed out in [Löf01].

Proof. Let x be a vector which is not identifiable. BecauseC is (2,2)-separating, the
possible parent sets ofx must form a triangle, i.e.{a,b}, {a,c}, and{b,c}. The only
vectorx which is feasible for any of the three sets ism(a,b,c).

Given a pirate coalitionP = {a,b}, there areM−2 possible triangles, forc∈ C\P .
For each triangle there is one word which is not identifiable.

Lemma 2. For any strategys < θ2,1 we getps(P ) = 1.

Proof. Let a andb be a pirate. If the pirates manage to forge a fingerprintx forming a
triangle with a third codewordc, thenc must matcha in s out of thed(a,b) detectible
marks and matchb on the others. These positions are exactly the ones where (P,{c}) is
separated, so ifs < θ2,1, then no suchc can exist.

Theorem 2. LetC be a(2,2)-SS, and letP ⊂ C be any pirate coalition of size at most
t = 2. For any strategys, the probability thatP escapes detection is

1−ps(P ) ≤ (M −2)min
{1

2

(

nδ

nτ2,1

)−1

,

(

nδ

nδ/2

)−1
}

.

Proof. Let κ(s) be the probability of chosing a particular fingerprint given a strategys.
By Lemma 2, we can assumes ≥ θ2,1. We have

κ(d(a,b)/2)=
(

d(a,b)
d(a,b)/2

)−1

≤
(

nδ

nδ/2

)−1

.



If s 6= d(a,b)/2, we get

κ(s) =
1
2

(

d(a,b)
s

)−1

≤
1
2

(

nδ

nτ2,1

)−1

,

The number of non-identifiable words isµ = M − 2, so there cannot be more thanµ
feasible false fingerprints allowing the pirates to escape. Multiplyingµ with κ(s) we
get the theorem.

If we take assymptotic values for increasingn, we arrive at the following corollary,
whereH is the natural entropy function.

Corollary 2. Any (2,2)-SS is a(2, ε)-UPP with

ε ≤ eλn,

where
λ = R ln2−H (τ2,1/δ)δ.

Considering our (2,2)-SSC withR≈ 0.026 andτ2,1 ≥ 0.03770, we get the following
values:

λ ≈ −0.09891,

ε ≤ 0.9058n,

which leads to the following theorem.

Theorem 3. There is a constructible asymptotic binary code with(2, ε)-UPP with rate
R ≈ 0.026and failure rateε ≤ 0.9058n.

The codeC has better rate than any (2, ε)-IPP known from past literature. Though
the code has been known, it is a new result that it has UPP, or even IPP. Unfortunately,
the results does not extend very well, since Theorem 1 rules out anyq-ary (t, ε)-UPP
codes fort > q.

5 Discussion

We have introduced a probabilistic 2-IPP code with a rate better than anything we have
managed to locate in the literature. Furthermore, with this code, there is no risk of
accusing an innocent user. It still remains to construct an efficient tracing algorithm
usable with the present code.

We have seen that codes with (t, ε)-UPP cannot exist fort > q, but it is an open
question whether the present techniques can be modified to construct (t, ε)-IPP codes
with t > q. It would also be interesting to constructq-ary codes with (q,ε)-UPP for
arbitraryq.
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