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Abstract A pirate is a person who buys a legal copy of a copyrighted work and
who reproduces it to sell illegal copies. Artists and authors are worried as they
do not get the income which is legally theirs. It has been suggested to mark ev-
ery copy sold with a unique fingerprint, so that any unauthorised copy may be
traced back to the source and the pirate who bought it. The fingerprint must be
embedded in such a way that it cannot be destroyed. Two pirates who cooperate,
can compare their copies and they will find some bits whidfedi These bits

must be part of the fingerprint, and when the pirates can see and change these
bits, they get an illegal copy with neither of their fingerprints. Collusion-secure
fingerprinting schemes are designed to trace at least one of the pirates in such a
collusion.

In this paper we prove that socalled 2}-separating codes often are collusion-
secure against two pirates. In particular, we consider the best known explicit
asymptotic construction of such codes, and prove that it is collusion-secure with
better rate than any previously known schemes.

1 Fingerprinting

Once upon a time, when computing logarithms was time consuming and tables of loga-
rithms expensive, publishers found they had to protect the tables against illegal copying.
They introduced tiny errors in the least significant digits to make every copy of the ta-
bles unique. In this way an illegal copy could be traced back to one legal original, and
the customer who had bought this copy could be prosecuted.

This technique, known as fingerprinting, has been suggested for digital data. Re-
search is going on within several fields to solve the various challenges involved. One
problem is the embedding. How can the copy be marked without distorting the data, and
without the users being able to change the fingerprint? We are not going to address this
problem any further, just state some assumptions about its solution. The problem we
are going to address is how to make the system resistant against a coalition of pirates.

A vendor holds the copyright to some work, it may be a sound recording, a digital
image, a literary text, or something else. A copy is a digital file which resembles the
work and has the same practical (and artistic) value. A user is a legal owner of a copy,
presumably bought from the vendor. A pirate is a user who makes and distributes illegal
copies of the work.

A fingerprint is a word (tuple) of symbols uniquely identifying a user. The set of
fingerprints is called am( M) codeC, wheren is the length of each word and is the
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number of users (or fingerprints). We leandm denote respectively the minimum and
maximum Hamming distance between two codewords,&adi/n is the normalised
minimum distance.

The fingerprint is supposed to be embedded into the copy in order to identify its
owner. The embedding of one symbol of the fingerprint is called a mark. We assume that
a user investigating a single copy is unable to locate or identify any mark, and therefore
cannot change any mark. A coalition of users however, can compare their copies, and
any diference between their copies must be a mark. The pirates can produce copies
with a false fingerprint, but every mark has to match at least one of the legal copies held
by the pirates. This is known as the marking assumption.

Let P be a coalition of pirates. Since each pirate is associated to a fingerprint, we
write P C C. A positioni is undetectable foP if all the elements o match in position
i. The feasible sef'(P) is the set of false fingerprint which may be producedyyn
other words

F(P)={(c1,..., c):Vi=1...,n3(x1,..., Xp) € P,st.c; = x;}.

Note thatP c F(P). The elements of'(P) are often called descendantsmf

The fingerprinting cod& is assumed to be publicly known, however, the vendor
uses a secret cod& chosen uniformly at random from the ensemble of codes equiva-
lenttoC. The codeword embedded in the copy is the codeword ffbéreorresponding
to the codeword fron€ associated with the user. In this way, it is impossible for the pi-
rates two know which coordinate position is corresponding to a given detectable mark,
and which code symbol corresponds to a given value of the mark.

2 The identifiable parent property

The goal in collusion-secure fingerprinting is to identify at least one pirate when discov-
ering a false fingerprint produced by a coalition of at mqsitates. If this is possible,
we say that the code has thalentifiable parent property{PP).
Let 7,(C) be the family of set® c C of cardinality at most. Let P;(x) C P,(C) be
the family of coalitions which could have produced.e.

P,(X)={PeP(C):xe F(P)}.

If the elements ofP,(x) has a non-empty intersection for arythencC is ¢-IPP. The
following definition is equivalent, and standard.

Definition 1 (ldentifiable parent property). A codeC is said to have the-identifiable
parent property {-IPP) if there is an algorithmA such that for every € P,(C) and
every vectok € F(P), A(x) returns a member aP.

The algorithmic issues are beyond the scope of this paper. As far as we are con-
serned, the algorithrd may be an exhaustive search throi®@fC).

Observe that-IPP implies (— 1)-IPP. It is well-known that binary codes cannot
be even 2-IPF [BS98]. More generally the following proposition is well known in the
fingerprinting literature.



Proposition 1. Letr and g be integers. It < g, then there exist asymptotic families of
g-ary codes with-IPP. If 1 > ¢, there exists ng-ary code withe-IPP and more than
codewords.

In order to get collusion-secure codes with more pirates, we use probabilistic fin-
gerprinting schemes. We allow to have a certain error probability There are two
types of error: we call it dailure if A returns void and anistakeif A returns a word
which is not a member oP. Mistakes is a threat to justice, as it causes innocent users
to be accused. If there is no probability of mistakes, the output isfalways reliable,
but occasionally there is no output at all.

A t-IPP code withe-error (or ¢, €)-IPP) is defined as a code where the probability of
error ise. Failures may be turned into mistakes by picking a random codeword whenever
a failure should occur, and thus past literature rarely distinguish between failure and
mistake.

We define {, ¢)-UPP (undisputable parent property) to be a code where the algo-
rithm A has no risk of mistake and a probabilityof failure. Obviously, £, ¢)-UPP is
stronger than#(e)-1PP.

We say that a word is z-identifiable if it can be traced back to one undisputable

parent, that is if
n P#0.

PePi(x)

The set ofr-identifiable words is denotet} (C).

When the pirates compare their copies, they fihdetectable bits. This numbeét
is the Hamming distance between their two fingerprints. As long as the embedding is
kept secret by the vendor, it is impossible for the pirates to tell which detected mark
corresponds to which coordinate position in the code.

When they construct a false fingerprixtthey can only choose the distance-
d(a,x). Clearlyd(b,x) = d’' — d(a x). The two pirates cannot be distinguished, so we
can assume that< d'/2. We calls the pirate strategy, and defiae= s/n to be the
normalised strategy, whereis the length of a fingerprint.

Once the strategy is chosen, a fingerprint is produced uniformly at random from a
set of Z ;) feasible words. (I’ is even ands = d'/2, there arg(}) feasible words.)
There is a certain probability,(P) that the produced false fingerprint is identifiable.
The pirates will obviously chooseto minimisep,(P). The probability that the pirates
gets away with their forgery is- p(P), wherep(P) = min; p;(P).

For simplicity, we assume that the pirates know which two codewords they posess.
This allows them to make a perfect minimisatiorpefP), which might not be possible
in reality. Hence the(P) defined here is a lower bound on the true probability.

Theorem 1. A g-ary code cannot havg, ¢)-UPP for anyt > g ande < 1.

Proof. Consider a code and a coalition ¢# 1 pirates. For each coordinate position,
there is at least one symbol which appears in at least two of the pirate codewords. Thus
the pirates has a feasible word which matches at least two pirates in each coordinate
position. Since this false fingerprint is feasible for any subset mfates, none of the
pirates are undisputable parents.



Conjecture 1.There is an asymptotic family of-ary codes with non-zero rate and
(g, €)-UPP where: tends to zero.

3 Separating codes

Much of the fingerprinting literature has focused on properties which are related to,
but weaker thare-IPP. The most important one of these properties, i){separation.
Resently it was proved that )-separating codes can be used for constructirzg-(PP
codes|[BBKO1]. We shall see that some good?{2separating codes are actually good
(2,€)-IPP codes in themselves with better rates than the codes|from [BBKO1].

Definition 2 (Separating code).Lett = (14,.. ., t,) be a tuple of natural numbers. A
sequencéTy, ..., T) of pairwise disjoint vector sets is called-&onfiguration if#T; =
t; for all j. Such a configuration is separated if there is a positioguch that for all
[ #I' every vector of] is different from every vector @ on positioni.
A code igt-separating (a&-SS) if every-configuration is separated.

If ; = 1 for alli, thent-separation is equivalent tehashing. Fot = 2 there is a vast
literature, in particular on (4)- and (22)-SS, it dates back at least to '69 [FGU69].
See[[Sag94] for a survey.

If a codeC is not (¢, 1)-separating, there is a pirate coalitibpof ¢ users who are
able to forge a fingerprint which belongs to a user not memberTaf To see this, just
let (Ty, {x}) be a ¢, 1)-configuration which is not separated. We say #iatframed by
Ty, and ¢, 1)-SS are often calledframeproof codes in the fingerprinting literature.

If a code is (, t)-separating, it means in fingerprinting terms, that two disjoint coali-
tions Ty, T> € P,(C) cannot produce the same false fingerprint, K€1) N F(T) = @.
These codes where calledecure frameproof in some early fingerprinting literature.

Definition 3 (Separating weights).Let (T3, ..., T;) be at-configuration. The separat-
ing weight6;(Ty;...;T;) is the number of positions where the configuration is sepa-
rated.

If C is an(n, M) code, its minimum separating weightis the least separating
weight for anyt-configuration fromC. The normalised separating weightzds.= 6 /n.

Obviously, a code is-separating if and only if; > 0.
Proposition 2. For a binary code, we havéy 1 > d—m/2.

This result was found by Sagalovi¢h [Sag65], but we include a proof for the reader’s
convenience.

Proof. Let (C, c,a) be any three codewords. Since separating weights are invariant over
the ensemble of equivalent codes, we can by translation assumg thét We shall
find a lower bound on the separating weigh(, c; a).

First we take (21)-separation. Le®, ¢, anda be rows of a matrix. There are three
types of columns; Type R is (001 )which are the ones giving separation, Type 0 is
(000)", and Type | is (010) and (011J. Let v; be the number of columns of Type
We have that(0, c;a) = vg andw(c) = v,.



Define
Y :=d(0,a)+d(ca) = 2vg+ v = 20(0,c;a) + w(c).

SinceZ is the sum of two distances, we have
2d <X <2m,

so
20(0,c;a)= X —w(c) >2d—m.

It has also be shown th&@b, > 2d —3m/2 in a similar way. A corollary is that if
6> %, thend,, is non-zero, and the code is, @-separating.

Proposition 3. Lett be a tuple of natural numbers.df; is a M’-ary [n;, M| code with
separating weigh#;, and C; is a g-ary [n2, M'] code with separating weiglt’, then
the concatenatiorC of the two codes is gu, M] code withn = n1np and separating
weight6; > 6;6; .

Proof. Let (T1,..., T;) be anyt-configuration fromC. Then there is a corresponding
t-configuration (7, . .., T!) in C1, which is separated in at leagtpositions.

Now consider a single positioh where (7, ..., T}) is separated. Each symbol in
this position corresponds to a worddh, so (7, .. ., T}) corresponds to a collection of
subsetsTy, ..., T!)in Cz. Since [7,...,T}) is a separatettconfiguration, (7. . .., T
must also be a separategonfiguration, and sinc€> has separating weighf, it fol-
lows that (I, ..., T!') is separated in at leagf positions.

We conclude thatT, ..., T;) is separated in at leagg; positions, and since this
holds for anyt-configuration, the proposition follows.

Corollary 1. The concatenation of tweSS is a&-SS.

The current best constructible rate for asymptoti@}2SS is 0026. This was con-
structed in [[CELSO1] by concatenating an asymptotic code wwh% with a small
inner code which had been explicitely confirmed to be2jzeparating. However,
Sagalovich|[[Sag94] had already given dfelient construction of (2)-SS with this
rate.

The outer code used in the construction is one due to Tsfasman. He showed in
[Tsf9l], that there is an asymptotic class @ary codes with rateR and minimum
distances whenever

R+6<1—-(yvq-1)1t.

The inner code is the punctured dw@l of a two-error-correcting BCH code with
parameters [12@4,55]. This code was proven to be 3-wise intersecting_in [CZ94],
a property which is equivalent to ,(2)-separation [BRE0]. To see that is (2 2)-
separating, we recall that the dual of 2-BCH has only two weigRts; 2 and 2/ +2'.
Consequently”’ hasd > 2% —2' —1 andm < 2% +2', and

4d—3m>2% -7.2' -4,

which is greater than zero whenever 3. Our codeC’, hasm = 72, s06,1 > 55—
72/2=109.



The specific outer code shall haye= 214, and since we requiré ~ 0.75, we get
R~1-1271-0.75~0.2421. The (21)-separating weight is, ; > 0.75— 0.5 = 0.25.
The concatenated code will have R ~ 0.026, 6 ~ 0.3274, andr,; > 0.03770. As
mentioned, this construction is not new. The new result, which will be proved in the
next section, is that is (2 €)-UPP where: tends to 0 with increasing

4 Binary separating codes for fingerprinting

In the sequel, we assume a binary code./ké, b, ¢) be the word obtained by majority
voting of the three vectors, b, andc. That is, in each positiohin m(a, b, c) contains
the symbol which occurs in positiarof at least two of the three vectaasb, andc.

Lemma 1. If Cis an(n, M) (2,2)-SS, then for any = {a,b} c C, we have
F(P)\I»(C) = {m(a,b,c) : ce C\ P},

and
#(F(P)\12(C)) =M -2

This result was pointed out in [L6f01].

Proof. Let x be a vector which is not identifiable. Becausas (2 2)-separating, the
possible parent sets @fmust form a triangle, i.e{a,b}, {a,c}, and{b,c}. The only
vectorx which is feasible for any of the three setsri&, b, c).

Given a pirate coalitio® = {a,b}, there areM — 2 possible triangles, fare C\ P.
For each triangle there is one word which is not identifiable.

Lemma 2. For any strategy < 621 we getp,(P) = 1.

Proof. Leta andb be a pirate. If the pirates manage to forge a fingerpriftrming a
triangle with a third codeword, thenc must matcha in s out of thed(a, b) detectible
marks and match on the others. These positions are exactly the ones wifefe}() is
separated, so i < 6, 1, then no sucle can exist.

Theorem 2. LetC be a(2,2)-SS, and le C C be any pirate coalition of size at most
t = 2. For any strategy, the probability thatP escapes detection is

-1 -1
1—Ps(P) < (M_Z) min{ % <n:fl> ' <ngj2> }

Proof. Let x(s) be the probability of chosing a particular fingerprint given a strategy
By Lemm4g 2, we can assurge> 6, 1. We have

-1 -1
K(d(a,b)/2>=<d‘(1f5§)}2> S<Z;52> ’



If s #d(ab)/2, we get

-1 -1
K(s)=%<d(a,b)> S;( n5> |
s ntoq

The number of non-identifiable words js= M — 2, so there cannot be more than
feasible false fingerprints allowing the pirates to escape. Multiplyingith «(s) we
get the theorem.

If we take assymptotic values for increasimgve arrive at the following corollary,
whereH is the natural entropy function.

Corollary 2. Any(2,2)-SS is &2, ¢)-UPP with
€< ein’

where
A= RIN2— H(r21/6)6.

Considering our (2)-SS¢ with R ~ 0.026 andrp 1 > 0.03770, we get the following
values:

A~ —0.09891
€ <0.905¢,

which leads to the following theorem.

Theorem 3. There is a constructible asymptotic binary code wWhe)-UPP with rate
R ~ 0.026and failure ratee < 0.9058'.

The codeg has better rate than any, €-IPP known from past literature. Though
the code has been known, it is a new result that it has UPP, or even IPP. Unfortunately,
the results does not extend very well, since Thedrgm 1 rules oug-any (1, ¢)-UPP
codes for > gq.

5 Discussion

We have introduced a probabilistic 2-IPP code with a rate better than anything we have
managed to locate in the literature. Furthermore, with this code, there is no risk of
accusing an innocent user. It still remains to construct féinient tracing algorithm
usable with the present code.

We have seen that codes withe)-UPP cannot exist for > ¢, but it is an open
question whether the present techniques can be modified to conste)elPP codes
with ¢ > ¢. It would also be interesting to construgtary codes with 4, €)-UPP for
arbitraryg.



References

BBKO1. A.Barg, G. R. Blakley, and G. Kabatiansky. Good digital fingerprinting codes. Tech-
nical report, DIMACS, 2001.

BR80. BellaBose and T. R. N. Rao. Separating and completely separating systems and linear
codes.|[EEE Trans. Comput29(7):665—-668, 1980.

BS98.  Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital |&&E.
Trans. Inform. Theory44(5):1897-1905, 1998. Presented in part 1995, see Springer
LNCS.

CELSO01. Gérard D. Cohen, Sylvia B. Encheva, Simon Litsyn, and Hans Georg Schaathun. Inter-
secting codes and separating codescrete Applied Mathematic2001. To appear.

CZ94.  Gérard Cohen and Gilles Zémpr. Tntersecting codes and independent jalBik&s.
Trans. Inform. Theory40:1872-1881, 1994.

FGUG69. A. D. Friedman, R. L. Graham, and J. D. Ullman. Universal single transition time
asynchronous state assignmehEEE Trans. Comput18:541-547, 1969.

L6f01.  Jacob LofvenbergCodes for Digital Fingerprinting PhD thesis, Linkdpings Univer-
sitet, 2001 http://www.it.isy.liu.se/publikationer/index.htmll

Sag65. Yu. L. Sagalovich. A method for increasing the reliability of finite autonPatdlems
of Information Transmition1(2):27-35, 1965.

Sag94. Yu. L. Sagalovich. Separating systemBroblems of Information Transmition
30(2):105-123, 1994.

Tsf91l.  Michael A. Tsfasman. Algebraic-geometric codes and asymptotic probRistsete
Appl. Math, 33(1-3):241-256, 1991. Applied algebra, algebraic algorithms, and error-
correcting codes (Toulouse, 1989).



http://www.it.isy.liu.se/publikationer/index.html

	Fighting two pirates

