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Abstract
With a digital fingerprinting scheme a vendor of digital copies of copyrighted
material marks each individual copy with a unique fingerprint. If an illegal
copy appears, it can be traced back to one or more guilty pirates, due to this
fingerprint. To work against a coalition of several pirates the fingerprinting
scheme must be based on a collusion-secure code.

We make a new error analysis for the well-known collusion-secure code
due to Boneh-Shaw, proving that it is much better than originally assumed.
We also point out a problem of adverse selection to which schemes by Tardos,
and by Le, Burmester, and Hu appears to be vulnerable.

1 Introduction
The problem of digital fingerprinting was introduced in [14], studied in [2], and given
increasing attention following [3]. A vendor selling digital copies of copyrighted material
wants to prevent illegal copying. Digital fingerprinting is supposed to make it possible to
trace the guilty user (pirate) when an illegal copy is found. This is done by embedding a
secret identification mark, called a fingerprint, in each copy, making every copy unique.

The fingerprint must be embedded in such a way that it does not disturb the
information in the data file too much. It must also be impossible for the user to remove or
damage the fingerprint, without damaging the information contents beyond any practical
use. In particular, the fingerprint must survive any change of file format (e.g. gif to tiff)
and any reasonable compression including lossy compression. This embedding problem
is essentially the same as the problem known as watermarking in the literature.

If a single pirate distributes unauthorised copies, they will carry his fingerprint. If the
vendor discovers the illegal copies he can trace them back to the pirate and prosecute him.
If several pirates collude, they can to some extent tamper with the fingerprint. When they
compare their copies they see some bits (or symbols) which differ and thus must be part
of the fingerprint. Identified bits may be changed, and thus the pirates create a hybrid
copy with a false fingerprint. In order to trace at least one pirate from such a collution, we
use what is known as a collusion-secure code.

Collusion-secure codes are also employed in traitor tracing [5]. Whereas
fingerprinting protects the digital data in themselves, traitor tracing protects broadcast
encryption keys. Other important variants of the problems are dynamic traitor tracing
(e.g. [9]) and anonymous fingerprinting [8].

A collusion-secure code can be probabilistic or combinatorially. In a probabilistic
scheme, the vendor shall be able to trace a pirate with probability at least 1− ε for some
small error rateε. Combinatorially collusion-secure codes allow successful tracing with
probability 1.



Many schemes have been suggested over the past few years, with various pros and
cons. In this paper we make a comparison of binary collusion-secure codes, both for
some reasonable parameters, from a thousand to a billion users, and for the asymptotic
case. The fingerprinting model is slightly refined, and we show that the error rates stated
for existing schemes are not necessarily comparable.

We also make a new error-analysis to show that the Boneh and Shaw scheme from [3]
is better than previously assumed. In particular the Boneh-Shaw scheme yields asymptotic
classes of codes with positive rate and exponentially decreasing error rate, a property first
proved for the BBK scheme [1]. We also introduce a couple of new schemes, in a sense
variants of the Boneh-Shaw scheme, based on the new error analysis. We get particularly
good improvements in the two-pirate case.

It should be mentioned that the design of collusion-secure codes is only a small part
of the problem of fingerprinting. Another major problem is how actually to embed the
fingerprint in the digital data; this problem has been studied in the field ofwatermarking
on which there is an extensive literature. Little work exists on how to combine this into
complete fingerprinting system. The present work shows that the length of the fingerprint
can be reduced for a given number of users and pirates. Thus fewer symbols have to
be embedded in the digital work to obtain the desired protection, which implies less
distortion of the copyrigted work if or when a complete system is constructed.

2 The fingerprinting game
We use notation and terminology from coding theory. An (n,M)q code is a set ofM
n-tuples (words) over an alphabet ofq symbols. We will refer to the set of fingerprints
used for embedding as an (n,M)q code. Obviously, this provides for up toM buyers and
requiresn symbols to be embedded in the digital file. Each symbol has to takeq different
values.

A fingerprinting scheme consists of an (n,M) codeC and a tracing algorithmA.
Each codeword fromC identifies a legitimate user, and is embedded as a fingerprint in
the digital copies sold to this user. If several users collude to make illegal copies, they
can make copies with some hybrid fingerprintx which combines information from their
respective fingerprints. The algorithmA takesx as the input, and outputs a setL ⊆ C. If
successful, the output is a non-empty subset of the pirates.

The fingerprinting scheme will usually take a randomising parameter, which we can
call the keyK. This is used to reduce the information available to the pirates; the key
being known to the vendor and unknown by the pirates.

The game proceeds in the following steps.

1. The vendor chooses the fingerprinting scheme (CK ,AK ) to use for the product he
is selling; this is the vendor strategy.

2. The keyK is chosen at random.

3. The copies of the digital data are generated using the fingerprinting scheme and the
key, and distributed to the users.

4. A coalition of potential pirates get together and compare their copies. At this
stage they are allowed to opt out of the game, and refrain from illegal copying
and distribution.



5. If the pirates choose to play, they choose a strategy for garbling the fingerprint,
make the copies, and sell the copies with the false fingerprint.

6. If and when an illegal copy is discovered, the vendor runs the tracing algorithmA
and prosecutes any users traced.

In accordance with Kerchoff’s principles, all the information chosen in Step 1 is
assumed to be public knowledge. The key chosen in Step 2 however is known only by the
vendor.

If the pirates choose not to make illegal copies, no crime is committed and it makes
sense to consider this as the normal or default outcome. In this case the game ends after
Step 4.

A second outcome, which is usually neglected, and which probably do not have much
impact on the design of fingerprinting scheme, is the situation where a crime is committed,
but never revealed. This corresponds to the above game terminating before Step 6. We
will not think any more of this outcome.

If the game continues until the end of Step 6, there are several possible outcomes.
The tracing algorithm returns a set of users, which can be (1) only guilty pirates, (2) only
innocent users, (3) some guilty and some innocent users, or (4) no user at all (void). If
at least one pirate and no innocent user is returned, we say that the tracing algorithm is
successful. If no guilty pirate is returned, we say we have an error of Type I, and if one
or more innocent users are accused, then we have an error of Type II. Clearly, in case (3)
above, we have both Type I and Type II errors.

Exactly what happens after Step 6 is outside the model. A criminal investigation is
likely to provide further evidence of the crime, and a prosecution might fail even when a
pirate has been traced, or succeed when an innocent user is accused. If innocent users are
accused, we may hope that other investigational methods can clear them.

For the sake of the model and consistent with previous works, we will consider the
vendor to be the winner in case (1) where no error occurs, and the pirates win if some
error occurs. If the vendor wins, the pirates are penalised and pay compensation to cover
the vendor’s losses. The pirates are worse off than in the default case, and the vendor is
at least as well off. If the pirates win, they get away with gains from the illegal sales, and
the vendor is no better off than in the default case.

One of the most important parameters for the fingerprinting scheme is a bound on
the error probability. Unfortunately, the error probabilities stated for various published
schemes are not comparable. Viewed at the start of the game, before the key is drawn and
before the fingerprints are distributed to the users, there is ana priori error probability
that the pirates will be caught, assuming that they will never opt out of the game in Step
4.

When the pirates compare their copies in Step 4, they gain some information about
their fingerprints. This information is very imperfect in most cases, but it can still result
in an (a posteriori) error probabilitywhich is significantly different from the a priori
probability.

It goes without saying that pirates who perceive a relatively high error probability
after comparing their copies are more likely to go on with the crime, because they face a
lower risk of being discovered and penalised. This is calledadverse selection; the game
is played only when the error probability is in favour of the pirates.

It is hard to argue that the pirates should not be allowed to opt out in a real setting,
and thus adverse selection is a major problem for some proposed schemes where only an



a priori error probability is stated, i.e. [7, 13]. Still it may be possible to extend the error
analysis for these schemes and prove that the probability of a pirate coalition seeing a
dangerously low a posteriori error probability is negligible. This is a question for future
research.

3 The marking assumption
The fingerprinting system must include some method to embed the fingerprints in the
digital data, in addition to the fingerprinting code and tracing algorithm briefly described
above. Some theoretical embeddings are suggested in [3]. We will base our collusion-
secure codes on the following Marking Assumption. Alternative assumptions have been
proposed, and some overview of this can be found in [1]. The present one says that the
pirates can produce any fingerprint (x1, . . . ,xn) if and only if for every positioni = 1. . .n,
at least one of the pirates see the symbolxi in positioni. Formally we define the feasible
setFC (P ) of false fingerprints which might be generated, as follows.

Definition 1 (The Marking Assumption)
LetP ⊆C be the set of fingerprints held by a coalition of pirates. The pirates can produce
a copy with a false fingerprintx for anyx ∈ FC (P ), where

FC (P ) = {(c1, . . . , cn) : ∀i,∃(x1, . . . ,xn) ∈ P,xi = ci}.

We callFC (P ) the feasible set ofP with respect toC.

There is an example of a simple and comprehensible embedding in the traitor tracing
setting [5]. The system uses aq×n matrix of permanent keysKj,i. Each row corresponds
to an alphabet symbol and each column to a coordinate position. A fingerprint is an
n-tuple (a1, . . . ,an) where eachai is in the range 1, . . . , q. The user with fingerprint
(a1, . . . ,an) receives the keyKai,i. The session key is the exclusive or ofn elementss1

to sn. An enabling block is transmitted at the start of each session consisting ofeKj,i (si)
for eachi andj, whereeK is the encryption function for keyK. To get the session key,
one key from each column of the matrix is required, and that is exactly what each user
has. When the pirates make a pirate decoder box, they must supply it with a key for each
coordinate position from one of their true fingerprints, and thus the marking assumption
is satisfied.

When the pirates opt to make false fingerprints, they choose a strategyS which will
define a probability distribution onFC (P ). However, since the strategy must be based on
what the pirates actually can see, their choice is restricted. Most fingerprinting schemes
use a secret permutation of the base code, meaning that when the pirates detect a column
where they see more than one symbol, they cannot know where in the codewords it belong.
Two columns (x1 . . .xt) and (y1 . . .yt) are indistinguishable if there is a permutationφ
on the alphabet such thatyi = φ(xi) for all i. A column (0. . .0) is of course not at all
detectable.

The most general type of pirate strategies is afractional strategy. For the presentation
we assumeq = 2 for simplicity. For each typex of indistinguishable columns, the pirates
choosefx ∈ [0,1], and ifNx columns of this type exist, they choose at randomfx ·Nx
of the columns where they output the symbol seen by the first pirate. In the remaining
columns of the type they output the opposite bit value.

It is customary in the literature to assumecolumn-independent strategies. In this case
a probabilitypx ∈ [0,1] is chosen for column typex, and independently for each column



of the type the bit matching the first pirate is chosen with probabilitypx and the opposite
symbol is chosen with probability 1− px. Clearly, by the law of large numbers, if the
number of columns of each type is moderate, then the column-independent strategies are
fair approximations to fractional strategies, and this is the case for the proposed schemes.

A fingerprinting scheme is a pair (CK ,AK ) whereCK is an (n,M) code andAK is
an algorithm taking a vectorx of lengthn and outputting a subsetL ⊆ CK . If x is a
false fingerprint produced by some coalitionP ⊆ C, thenA is successful ifL is a non-
empty subset ofP . We have an error of Type I ifL∩P = ∅, and an error of Type II if
L\P 6= ∅. We say that (CK ,AK ) is a priori (t, εI , εII )-secure if, when #P ≤ t, the a priori
probabilities of errors of Type I or II are at mostεI andεII respectively. The scheme is a
priori (t, ε)-secure, if the total a priori error probability is at mostε when there are at most
t pirates.

If the scheme is (a posteriori) (t, εI , εII )-secure ((t, ε)-secure), then for any pirate
coalition of sizet or less,εI andεII (ε) bound the error rates as perceived by the pirates
after Step 4 for any pirate strategy they might choose. It is clear that if the scheme is a
posteriori (t, εI , εII )-secure, then it is also a priori (t, εI , εII )-secure.

The distinction between a priori and a posteriorit-security has not previously been
made in the literature as far as we know. The definition used has been either that of
a priori security or ambiguous, but still most (though not all) of the schemes proposed
are in fact a posteriori secure. This will be a key issue when we compare schemes in
subsequent chapters.

In the literature we find two notable binary collusion-secure codes which are a
posteriori (t, ε)-secure and constructible for arbitraryt. There is one due to Boneh and
Shaw (which we will call ‘RS-RC’) [3] and one due to Barg, Blakley, and Khabatiansky
(which we call ‘BBK’) [1]. RS-RC is the most well-known scheme. BBK forms an
asymptotic family of codes with asymptotically declining error probability and non-zero
rate. Furthermore, BBK can be decoded inO(logM) whereas RS-RC requiresO(M). In
this paper we prove that also RS-RC has asymptotically vanishing error probability and
non-zero rate. The rate of BBK is very good for smallt, but RS-RC is better for largert.

4 A little coding theory
The Hamming distance between two wordsx andy is denotedd(x,y), and the minimum
distance of a codeC is denotedd(C) or just d. The normalised minimum distance is
δ = d/n. The code bookC is a matrix where the rows are the codewords ofC. The rate
of the code isR = (logM)/n.

Closest neighbour decoding is any algorithm which takes a wordx and returns a word
c∈ C such thatd(c,x) is minimised. This can always be performed inO(M) operations,
and for some codes it may be faster.

Concatenation is a standard technique from coding theory, and it has proven extremely
useful in fingerprinting.

Definition 2 (Concatenation)
LetC1 be a(n1,Q)q and letC2 be an(n2,M)Q code. Then the concatenated codeC1◦C2

is the(n1n2,M)q code obtained by taking the words ofC2 and mapping every symbol on
a word fromC1. Each set ofn1 symbols corresponding to one word of the inner code will
be called ablock.

Concatenated codes are often decoded by first decoding each block using some
decoding algorithm for the inner code, so that a word of symbols from the outer code



alphabet is obtained. This word can finally be decoded with a decoding algorithm
designed for the outer code.

For the error analysis, we will use the well known Chernoff bound as given in the
following theorem. See e.g. [6] for a proof. The relative entropy function is defined as

D(σ||p) = σ log
σ

p
+ (1−σ) log

1−σ

1−p
, for σ,p ∈ (0,1). (1)

Theorem 1 (Chernoff)
Let X1, . . . ,Xt be bounded, independent, and identically distributed stochastic variables
in the range[0,1]. Let x be their (common) expected value. Then for any0< δ < 1, we
have

P

(

t
∑

i=1

Xi ≤ tδ

)

≤ e−tD(δ||x), whenδ < x.

We writeB(n,p) for the binomial distribution withn trials with probabilityp. If X is
distributed asB(n,p), we writeX ∼ B(n,p).

Another useful concept for collusion-secure codes is separating codes. Such codes
have been applied in various fields for more than three decades, see [10] for a survey.

Definition 3
A (t,u)-separating code or(t,u)-SS has the property for any two disjoint setsT andU
of respectivelyt andu codewords, there is at least one coordinate position where every
codeword ofT is different from any codeword ofU .

It can be shown that (t,1)-separating codes are frameproof, in the sense that it makes it
impossible for a coalition of sizet to generate a fingerprint identical to that of an innocent
user.

5 Concatenated schemes
In this chapter we develop a general analysis of concatenation of collusion-secure codes.
Decoding is done by decoding each block with a tracing algorithm for the inner code,
in order to obtain a word of symbols from the outer code alphabet. If inner decoding is
always successful, then this returns a word in the feasible set of the pirates, viewed as a
subset of the outer code.

When Boneh and Shaw used this technique, they chose the parameters such that inner
decoding succeeds in every position with probability 1− ε/2, and and such that outer
decoding, given perfect inner decoding, succeeds with probability 1− ε/2. Thus the total
error probability was less thanε. Demanding that inner decoding be correct in every
position is a strong requirement, because its probability declines exponentially in the
code length. An idea pointed out in [1] is that a bounded fraction of failures from inner
decoding can be corrected by making the outer code slightly more powerful. This idea
works for the Boneh and Shaw scheme as well, and we will see that their scheme is far
better than they proved.

We suggest to decode the outer code with list decoding. Apart from the obvious
advantage of allowing us to trace more than one pirate in many cases, it also makes the
error analysis simpler, and it becomes clear how to adapt the error analysis for other
choices for inner and outer codes in the scheme. Even though an error analysis for closest
neighbour decoding can be made, it is not certain to give better error bounds.



List decoding of concatenated codes
Let CI be an (n1, q) inner code which is (t, εin)-secure, andCO an (n2,M)q outer code.
LetRI andRO denote the rates ofCI andCO respectively.

Our decoding algorithm works as follows. LetP be a pirate coalition of size at most
t, andx ∈ FC (P ). First each block is decoded with respect to the inner code, to produce
a q-ary vectory of lengthn2. The algorithm returns the setL of codewordsc ∈ CO at a
distanced(c,y) ≤D, for some decoding thresholdD.

Let F be the number of positions where inner decoding is incorrect. Clearly,
F ∼ B(n,εin). The pirates matchy in at least (n− F )/t positions on average, which
means that ifF ≤ tD− (t−1)n2, then at least one guilty pirate is caught. The following
theorem follows by the Chernoff bound.

Theorem 2
Using a concatenated code of an(n1, q) t-secure inner code withεin-error, and an(n2,M)
outer code, with outer list decoding with thresholdD = n2∆, the probability of identifying
no guilty user is

εI ≤ P (F ≥ (1− t+ t∆)nO), F ∼ B(nO, εin),

and

εI ≤ 2−nOD(1−t+t∆||εin), if εin < 1− t+ t∆.

Corollary 1
If D(1− t+ t∆||εin) > 0, then the probability of Type I error tends exponentially to zero
with increasing code lengthn2.

Note that the bound onεI is valid for any codes, and it depends only onn2, ∆, t, and
εin. The Type II error rateεII will depend on the design of the outer code.

Random codes (RC)
Boneh and Shaw used random codes, for which Chee [4] was credited. LetCO be a
(n2,M)q code, where each symbol in each codeword is chosen uniformly at random from
the alphabet. The entire code is kept secret by the vendor.

Theorem 3
If a random code is used as outer code for concatenation and1/q < 1−∆, the probability
of including a given innocent userc in the output list is bounded as

P (c∈ L) ≤ ε̂ ≤ 2−n2D(1−∆||1/q),

and the total Type II error rate is bounded as

εII ≤ 2n2(RO logq−D(1−∆||1/q)).

Proof: Consider the outputy from inner decoding and an innocent userc 6∈ P . Let
X = n2 − d(c,y). ClearlyX is a stochastic variable with distributionB(n2,1/q), and
P (c∈ L) = P (X ≥ n2−D). The error probability is bounded as

εII ≤
∑

c∈C\P
P (c∈ L) ≤M ·P (X ≥ n2(1−∆)),

and the theorem follows by Chernoff’s bound. �



Corollary 2
The Type II error rate tends exponentially to zero with increasing length ifRO <
D(1−∆||1/q)/ logq.

One great advantage of random codes is that they can be made for any number of users
quite trivially. Observing the error bounds, we note thatεI is unaltered, andεII degrades
gracefully whenM increases.

Replication scheme with random codes
The following construction was introduced by Boneh and Shaw to serve as inner code.
We will call it the Boneh-Shaw replication scheme (BS-RS).

BS-RS uses a binary (r(M −1),M) code which isM-secure withε-error. The code
book hasM −1 distinct columns replicatedr times. A set of identical columns will be
called a type. Every column has the form (1. . .10. . .0), such that thei-th (1≤ i ≤ M)
user has zeroes in the firsti−1 types and a one in the rest. We can see that unless useri is
a pirate, the pirates cannot distinguish between the (i−1)-th and thei-th type. Hence they
have to use the same probability of choosing a 1 in both these types. Ifr is large enough
we can use statistics to test the null hypothesis that useri be innocent. The output is a list
of users for which the null hypothesis may be rejected.

We have
ε̂ ≤ 2

1− r

2M2 .

Theorem 4 (Boneh and Shaw)
The BS-RS with replication factorr is (M,ε)-secure wheneverr ≥ 2M2 log(2M/ε).

Suppose we use an (n1, q) BS-RS as an inner code. This scheme has several control
parameters which may be used to tune the performance of the system. The inner code
cardinalityq is the trickiest one. Most of the time we will follow Boneh and Shaw and set
q = 2t. Obviouslyn2 andr control a trade-off between code length and error rate. Finally,
we have∆ to control the trade-off between the two error types.

Theorem 5
If we useq = 2t,∆= t/(t+1), andεin = 1/2t, then RS-RC is an(t, ε)-secure fingerprinting
scheme accommodatingM users requiring length

n = (2t−1)
⌈

8t2(3+2logt)
⌉

n2,

where

n2 =
max{− logεI , logM − logεII}

D( 1
t+1||

1
2t )

.

Asymptotically, the length is

n = Θ
(

t4(logt)(logM − logε)
)

.

In this theorem,∆ is made only slightly greater than the minimum value of (t−1)/t.
By Corollary 1 we requireεin < 1/(t+1), but to maken2 linear in t, εin must in fact be
much smaller than 1/(t+1).



t = logM Boneh and Shaw New analysis

10 6.64·108 3.14·108

15 3.91·109 1.82·109

20 1.40·1010 6.56·109

25 3.80·1010 1.80·1010

30 8.68·1010 4.15·1010

Table 1: Some lengths whent = logM.

Proof: Theorems 2 and 3 give two bounds onn2, so we get

n2 = max

{

− logεI

D( 1
t+1||

1
2t )

,
logM − logεII

D( 1
t+1||

1
2t )

}

.

It can be shown thatD(1/(t+1)||1/(2t)) = Θ(t−1), and hence

n2 = Θ(t(logM − logε)).

For the inner code, we have

n1 = (q−1)2q2(log(2q)− logεin) = (2t−1)8t2(3+2logt) = Θ(t3 logt).

The theorem follows sincen = n1n2. �
For comparison, we include the original theorem from [3].

Theorem 6 (Boneh and Shaw)
BS-RS with replication factorr andq = 2t users for the inner code, is at-secure(n,M)
code withε-error, where

n2 =
⌈

2t log
2M
ε

⌉

, r =
⌈

8t2 log
8tn2

ε

⌉

,

n = n2r(2t−1)≈ 16t3(2t−1)
(

log
2M
ε

)(

log
8tn2

ε

)

.

The decoding complexity wasΘ(n+M).

The most interesting point in the original theorem is thatr = Θ(logn2), such thatn
grows faster than linearly inn2. Sincen2 depends onM and onε, the length was much
more dependent onε andM than is with our analysis. In Table 1 we see some real sample
lengths for these codes, with our and Boneh and Shaw’s formulæ. The new analysis
appears to make an improvement by a factor of 2.1 (as pointed out by an anonymous
referee). It might be possible analytically to prove such an improvement factor in general,
but so far we have not looked into that.

Considering asymptotic classes of codes,∆ can be made smaller. The following
theorem gives the better rates.

Theorem 7
There exists an asymptotic class of fingerprinting codes with exponentially declining error
rate for any rateR satisfying

R <
D(1−2q2−r/(2q2)

t ||1/q)

r(q−1)
, (2)

if q andr are natural numbers such that(1−2q2−r/(2q2))/t > 1/q.



RS-RC BBK
t q r Rate CI Rate

2 4 238 2.42·10−4 (126,214) 0.0172
3 5 410 3.62·10−5 (2046,27) 3.98·10−4

4 7 847 9.62·10−6 (32766,210) 1.82·10−5

5 9 1457 3.53·10−6 (1048572,212) 4.36·10−6

7 13 3223 8.04·10−7 (1028−1,212) 0.116·10−8

Table 2: Asymptotic rates and maximising values ofq and r for the RS-RC codes for
some numbers of pirates.

Proof: Asymptotically,εin can be taken arbitrarily close to 1− t+ t∆, or in other words

∆ ≈
t−1+ εin

t
=

t−1+2q2−r/2q2

t
.

By Theorem 3, the outer rate can be chosen arbitrarily close toD(1−∆||1/q)/ logq. We
get the following component code rates

RO ≈
D(1−2q2−r/2q2

t ||1/q)

logq
, RI =

logq
r(q−1)

,

which gives the total rate as stated in the theorem. �
In Table 2, we can see some asymptotic rates for our codes. The BBK codes given are

the best we could find using constructible inner codes from the literature, namely duals of
BCH codes [12]. We can see that BBK is better for few pirates, but for largert we could
not find (t, t)-separating codes which are good enough. It is also interesting to note that
2t is not the maximising value ofq asymptotically, except fort = 2.

Outer code with large distance
We recall that codes with sufficiently large distance give combinatorially secure codes.
The BBK scheme introduced outer codes where the minimum distance is large enough
not only to successfully trace, but also to correct for some decoding errors from the
inner decoding. We present an error analysis for such codes, following the lines from
the previous section, and show how it can be combined with (t, εin)-secure inner codes.
The BBK code used (t, t)-separating inner codes.

Let CI be an inner codet-secure withεin-error. Let ε̂in be an upper bound on the
probability of accusing any given innocent userc. Even though this is a parameter
traditionally never explicitly stated for constructed fingerprinting schemes, it is often
known by a bound at least as good as that forεin, which is often bounded asεin ≤Mε̂in.

Let CO be the outer code with minimum distanceδn, andP = {a1, . . . ,at} ⊆ CO a
pirate coalition. Consider a false fingerprintx after inner decoding and an arbitrary
innocent userc 6∈ P . For eachi, c matchesai in at mostn(1− δ) positions. If inner
decoding were perfect,x would matchc in at mostnt(1− δ) positions.

The outer code is decoded by list decoding with threshold∆. First we study the
probabilityπ(c) that an innocent userc be accused. LetS be the set of coordinates where
c is different from any pirate, and letSC be the complement, i.e. the set of positions



wherec match at least one pirate. LetXi be a stochastic variable which is one if and only
if ci = xi. We get that

s(c,x) =
∑

i∈S
Xi+

∑

i∈SC

Xi ≤
∑

i∈S
Xi+#SC . (3)

We have #SC ≤ nt(1− δ). If we letS ′ ⊆ S be any subset of sizen(1− t(1− δ)), we get

s(c,x) ≤X+nt(1−δ)), whereX =
∑

i∈S ′

Xi. (4)

We have thatXi is 1 with probability ˆεin and 0 otherwise. We get

ε1 ≤ P (s(c,x) > (1−∆)n) ≤ P (X > ((1−∆)− t(1− δ))n). (5)

Using Chernoff, we get the following theorem.

Theorem 8
Using outer codes with normalised minimum distanceδ, inner code with probabilitŷεin of
accusing a given innocent user, and list decoding with threshold∆, we get the following
Type II error probability:

ε̂ ≤ 2−nD(σ||ε̂in), where σ = (1−∆)− t(1−δ). (6)

Combining Theorems 2 and 8, we get that

δ > 1−
1− εin − tε̂in

t2
. (7)

It follows immediately thatq > t2, but exactly how much largerq needs to be is
less clear. A good candidate as an outer code with large minimum distance is the
[nO,kO,nO − kO + 1]q Reed-Solomon (RS) codes. For asymptotic classes of codes,
algebraic geometry (AG) codes can be used. Both RS and AG codes can be decoded
with the Guruswami-Sudan algorithm, with complexityO(nO).

The rates obtained with BS-RS as inner codes and RS or AG outer codes are not
so good. Medium sized inner codes are needed, and BS-RS have poor rate except for
very small size. In the two-pirate case [11] simplex codes is a better alternative, giving
an asymptotic rate of 0.062. The following proposition state the general result with AG
outer codes. More research is required to make it useful fort > 2.

Proposition 1
If there is an(nI , q) (t, εin)-secure code where the probability of accusing a given innocent
user is at most̂εin, then there is an asymptotic family of(t, ε)-secure codes with rate
RO(logq)/nI , whereRO solves

RO logq =D
(1− εin

t
− t
(

RO+
1

√
q−1

)

∣

∣

∣

∣ ε̂in

)

,

and whereε vanishes exponentially.

The proof is very similar to that of Theorem 7, so it is ommitted.



q r Outer code ∆ n logM ε

49 53500 [49,2] 0.785 125832000 11.2 0.653·10−10

49 62690 [49,3] 0.746 147446880 16.8 0.987·10−10

49 78690 [49,4] 0.71 185078880 22.5 0.977·10−10

49 119000 [49,5] 0.685 279888000 28.1 0.806·10−10

64 130000 [64,5] 0.715 524160000 30 0.959·10−10

Table 3: Some RS-RS codes against three pirates.
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