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Abstract
Collusion-secure codes are used for digital fingerprinting and for traitor
tracing. In both cases, the goal is to prevent unauthorised copying of
copyrighted material, by tracing at least one guilty user when illegal copies
appear. Many recent works have introduced collusion-secure codes based on
the Marking Assumption. In this paper we study how error-correction makes
it possible to relax this assumption, and we modify two existing schemes to
enable error-correction.
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1 Introduction
Unauthorised copying and distribution of copyrighted material has received increasing attention
over many years, both in research communities and in the daily press. Authors and artists depend
on their income from legal sales, and unauthorised copying is often seen as a threat to these sales.
For the movie or music industry, this is a question of big money.

The American International Intellectual Property Alliance [1] claim that losses from piracy of
U.S. copyrighted material amounts to 25-30 billion US$ annually, excluding internet piracy. Even
though such estimates are often disputed, there is no doubt that big money is at stake, and the issue
receives tremendous interest. Several countries, including Norway, are in the process of changing
their legislation to deal more effectively with illegal distribution in new media.

There are several technological approaches to battling copyright piracy. Digital Rights
Management (DRM) encompass different techniques to prevent copying or restrict use of a digital
file. Such technology is controversial because it also restricts normal use which is traditionally
legal. So-called forensic techniques do not prevent copying, instead, when unauthorised copies
appear, they enable the copyright holder to trace the pirates and prosecute. Since forensic
techniques only come into play when a crime is evident, it is less controversial than DRM. Still,
no perfect or generally accepted solution exists yet, giving ample room for new research.

Digital fingerprinting was suggested as a forensic technique in [14], and following [3, 4] this
problem has received increasing interest. Each user is identified by a «fingerprint», which is
embedded in the file in such a way that the user cannot remove it. If an unauthorised copy appear,
the embedded fingerprint reveals the identity of the guilty party. Of course the pirate(s) will do
what they can to remove or damage the fingerprint, and making the fingerprinting system robust
to any conceivable attack is a challenging task.

A large fraction of fingerprint literature has focused on making collusion-secure codes for
fingerprinting. The goal is to counter attacks where a coalition of pirates get together and cut-
and-paste from their individual copies in order to make an illegal copy with a hybrid fingerprint.
Most authors have assumed that an underlying watermarking system is used to embed the
fingerprints. The most well-known fingerprinting model [4] make rather strong assumptions about
the watermarking system.
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Figure 1: Watermarking/Fingerprinting model.

Different alternative models exist. Guth and Pfitzmann [7] among others have argued that a
more realistic model should correct random errors as well as being collusion-secure. In Section 2,
we present the layered fingerprinting model of Guth and Pfitzmann, discuss possible attacks, and
add a few details. In Section 3, we show how we can make efficient codes for this model by
combining the theory of error-correcting codes with some fundamental ideas from [4]. A few
conclusions will be made in the last section.

2 The layered fingerprint/watermark model
Most works on fingerprinting assume that the fingerprint is a string (c1, . . . , cn) of n symbols. The
file is assumed to be divided into n segments, and one symbol is embedded in each segment using
a watermarking scheme.

Watermarking, briefly defined, is a technique to embed a message in a digital file in such a
way that an adversary is unable to remove or change this message. Neither the existence nor
the contents of the message is assumed to be secret, and thus watermarking is different from
steganography.

We first present a two-layer model for fingerprinting before we discuss respectively
fingerprinting and watermarking attacks on the system. Towards the end of the section, we will
discuss a three-layer model.

The two-layer model
Guth and Pfitzman pointed out how the standard fingerprinting models fitted into a layered
structure, with one watermarking layer and one fingerprinting layer. The layout is depicted in
Figure 1.

The file is divided into n segments which are fed directly and independently to the
watermarking layer. The embedding algorithm embeds a message from the set Q in the segment,
in such a way that an adversary cannot change or remove it. The watermarked segment is called a
mark. The extraction algorithm takes a mark and returns a message from Q.

In the fingerprinting layer, each user is identified by an element from some (n,M) code C

over Q, that is a subset C ⊆Qn. If Q has q elements, we say that C is an (n,M)q code. The code
C has M elements, so M users can be catered for. When a copy is sold, the buyer is assigned a
fingerprint c ∈ C. Each element of c is fed to the watermarking layer to be embedded in the digital
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file. Observe that the copyrighted file is not used in the fingerprinting layer at all.
When an illegal copy is found, the file is split into n marks which are fed to the extraction

algorithm in the watermarking layer. The n outputs give a false fingerprint x = (x1, . . . ,xn) ∈ Qn

which is fed to the fingerprinting layer. The fingerprinting decoder takes x and outputs L ⊆ C

identifying a number of users expected to be guilty.
If nothing foul happens, any fingerprinted copy can be traced back to a user. In fact x ∈ C

and corresponds to the buyer of this copy. A pirate however, does not want to be identified, so he
will make attack, either on the watermarking or on the fingerprinting scheme, in order to cause the
decoding to fail. Possible attacks are studied in subsequent subsections.

The mapping from coordinate positions of C onto segments is assumed to be uniformly
random and secret. In other words, the pirates have no information about which coordinate
position i = {1, . . . ,n} of C is embedded in a given mark.

We have assumed that the watermark extractor always returns a single element of Q. This
is a simplification. Many real systems will also be able to return ‘erasure’ when no one element
appears as more likely than others. In case of an erasure, we return a random element of Q, and
treat it as an error.

Attacks in the fingerprinting layer
Pirates can mount attacks against either or both layers. The goal is always to get an illegal copy
which cannot be traced back to them, i.e. where the output L of the fingerprinting decoder does
not contain any of the pirates.

When a group of t pirates collude, they have access to t distinct copies with different
fingerprints/watermarks. Comparing the copies, they will see some segments which are different
(called detectable marks) and some which are identical (called undetectable marks).

In the fingerprinting layer, there is one known attack available, namely the Cut-and-paste
attack, where the pirates take some segments from each of their copies and paste them together.
The result is a hybrid fingerprint where each symbol matches at least one of the pirate copies.

Many traditional works on fingerprinting considered only cut-and-paste attacks. They
assumed that the output xi from the watermarking layer would always match the i-th symbol
of at least one of the pirates. The classic phrasing of this definition is as follows [4].

Definition 1 (The Marking Assumption)
Let P ⊆ C be the set of fingerprints held by a coalition of pirates. The pirates can produce a copy

with a false fingerprint x for any x ∈ FC (P ), where

FC (P ) = {(c1, . . . , cn) : ∀i,∃(x1, . . . ,xn) ∈ P,xi = ci}.

We call FC (P ) the feasible set of P with respect to C.

A code C is said to be (t, ε)-secure under the Marking Assumption, if, when there are at most
t pirates, the output L of the fingerprinting decoder is a non-empty subsets of the pirates with
probability at least 1− ε.

The most well-known solution under the Marking Assumption, is due to Boneh and Shaw
[3, 4]. A handful of other schemes have also appeared over the years; see [11] for an overview.
Collusion-secure codes are also employed in traitor tracing [5, 6]. Whereas fingerprinting protects
the digital data in themselves, traitor tracing protects broadcast encryption keys.

Attacks in the watermarking layer
A real watermarking scheme cannot be expected to be infallible. We say that the extraction
algorithm fail in position i if the output xi does not match the i-th symbol of any of the pirate
fingerprints. Such failure can be either accidental or due to pirate attacks, and the following causes
are known.
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1. Random unintentional noise. In digital distribution, we do not expect accidental distortions
of the file, but sometimes a fingerprinted file will be transmitted in an analog medium (like
radio) where no error-correction is used. When the file is distorted, the watermark may be
distorted as well.

2. Non-collusive watermarking attack. Non-collusive watermarking attacks can be applied to
any mark. By garbling the segment, the pirates cause the extraction algorithm to fail with
some probability.

3. Collusive watermarking attack. A collusive watermarking attack applies to detectable
marks. By combining different versions of the same mark, for instance by averaging, the
pirates can weaken the watermark and cause extraction to fail with some probability.

4. Cropping a segment. A pirate can crop the file by removing certain segments.

If the pirates use a very strong watermarking attack or extensive cropping, they will also ruin
the file so that it no longer be useful. This limits the success probability of the attacks. Let pe be an
upper bound on the probability that the extraction algorithm fail. This leads to a weaker Marking
Assumption [7] as follows.

Definition 2 (Marking Assumption with Random Errors)
Let P ⊆ C be the set of fingerprints held by a coalition of pirates, and let xi be the output xi from

the watermarking layer in position i. The probability that for all (c1 . . . cn) ∈ P , ci �= xi, is at most

pe, independently of the output xj for all other columns j �= i.

Note that when pe = 0, this coincides with the Boneh-Shaw Marking Assumption. An error-
correcting adaption of the Boneh-Shaw scheme was proposed in [7]. A non-binary solution was
presented in [9], protecting against deletion as well as errors, but this solution used Generalised
Reed-Solomon codes requiring a very large alphabet.

The assumption of independent segments is crucial in order to use simple statistical models
and formulæ. In real applications it may not be true. It is likely that some segments are independent
whereas others are more or less correlated. Now it is important to remember that the pirates do
not know to which code column a given segment corresponds. Thus, they will have no means to
predict the correlation between to code columns, and it seems reasonable to assume independence
as a fair approximation on average.

We assume that the receiver is able to synchronise before passing segments to the watermark
extractor, such that the decoder will know to which code position each symbol corresponds even
in presence of cropping. This can always be done if the receiver has access to the original file.
The missing symbols are erasures, replaced by random symbols and treated like errors. Some
authors argue that synchronisation is not always trivial and devise collusion-secure codes with
deletion-correction in order to synchronise in the fingerprinting layer.

The three-layer model
It can be argued that schemes based on [4] actually use a three-layer model. The fingerprinting
code of [4] is a concatenated code. It can be instructive to place the inner and outer codes in
different layers. In order to simplify notation, we consider only binary schemes where Q = {0,1}.

Lets first define a concatenated code. Take an inner binary (n1, q) code C1 and an outer
(n2,M)q code C2 over Q2. Each symbol of Q2 is mapped on a codeword from C1, and the
codewords of the concatenated code C is formed by taking each word of C2 and replace the
symbols by words from C1. Thus we get an (n1n2,M) code C.

1. Watermarking layer. The watermarking scheme takes a bit 0 or 1 from the fingerprinting
layer and embeds it in a segment of the copyrighted file, like in the two-layer model.
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2. Inner fingerprinting layer. The inner fingerprinting code C1 is a (n1, q2) code over Q. The
encoder takes a symbol x ∈ Q2 and encodes it as a word c ∈ C1. Each bit of c1 is passed
to the watermarking layer for embedding. The segments or bits corresponding to the same
codeword of C1, is called a block.

3. Error-correcting layer. The outer code is an (n2,M) code C2 over Q2. This code has to be
error-correcting, and will correct errors whether they are caused in the watermarking layer
or in the inner fingerprinting layer. The encoder takes a buyer and encodes it as a codeword
c2. Each symbol of c2 is then passed to the inner fingerprinting layer for encoding and
embedding.

The rationale for the middle layer, is to expand the alphabet. Efficient known solutions for the
top layer requires huge alphabets.

Any collusion-secure code can be used for the inner code C1, and the output of the decoder
for C2 can be passed to the layer above. However, we can also use soft decision, as we do in this
paper, and pass soft information from the middle to the top layer. The details will be explained
later.

The inner fingerprinting code need not be very strong if the outer code can correct many errors.
Error-correction is actually the only required property for the outer code. Decoding in the inner
layer can also be allowed to be relatively costly, because the code is relatively small. It is much
more important to have an efficient decoder in the top layer.

With Kerchoff’s principle in mind, we assume that most of the system is public knowledge.
Only parameters which can be randomly chosen at initialisation of each new application can be
kept secret. Therefore, we assume that the pirates know how to divide the file into segments. On
the other hand, they do not know which segment correspond to which column of C, because this
mapping is a random secret permutation.

3 The Boneh-Shaw code
The Boneh-Shaw code [4] probably is the fingerprinting code most frequently referred to in the
literature. It assumes an underlying watermarking layer which is error-free. They do not explicitly
divide the fingerprinting problem into a middle and top layers, but the code is concatenated and
fits well in the three-layer model.

A problem in the error analysis of [4] is that the middle layer is also assumed to be error-free
in the sense that a very strong code is used in this layer so that the probability of error in one or
more blocks is negligible. Since there are many blocks, this is rather demanding.

We have seen in [10, 12] that the outer code of the Boneh-Shaw system has some error-
correcting capability. By only slightly increasing the code length in the top layer, we could correct
a lot of errors from the middle layer. This allowed us to use a considerably weaker code in the
middle layer, improving the overall system.

In this paper we take this one step further. The error-correcting code in the top layer can
be used to correct errors both from the middle and bottom layers. We shall see that the Boneh-
Shaw code essentially works fine even if random errors are permitted in the watermarking layer.
Following [12], we use a soft output in the middle layer decoding.

On the BS inner code
The inner code will be called the BS code and is depicted in Figure 2. It is a binary (r(M−1),M)
code which is (M,ε)-secure. The code book has M −1 distinct columns replicated r times. A set
of identical columns will be called a type. Every column has the form (1 . . .10 . . .0), such that the
i-th (1 ≤ i≤M) user has ones in the first i−1 types and a zeroes in the rest. We can see that unless
user i is a pirate, the pirates cannot distinguish between the (i−1)-th and the i-th type. Hence they
have to use the same probability of choosing a 1 for both these types. If r is large enough we can
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︷︸︸︷
11 · · ·1

︷︸︸︷
11 · · ·1
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11 · · ·1· · ·

︷︸︸︷
11 · · ·1

c2 00 · · ·0 11 · · ·1 11 · · ·1· · · 11 · · ·1
c3 00 · · ·0 00 · · ·0 11 · · ·1· · · 11 · · ·1
...

...
...

...
. . .

...
cq 00 · · ·000 · · ·000 · · ·0 · · ·00 · · ·0︸ ︷︷ ︸

q−1 column types

Figure 2: The Boneh-Shaw inner code.

use statistics to test the null hypothesis that user i be innocent. The output is a list of users for
which the null hypothesis may be rejected.

Theorem 1 (Boneh and Shaw)
The BS code with replication factor r is M-secure with ε-error whenever r ≥ 2 ·M2 · log(2M/ε).

A hybrid fingerprint is characterised by the number Fi of ones for each column type i. Let
F0 = 0 and Fq = r by convention (as if there were a column type 0 with all zeroes, and a type q with
all ones). The Fi are stochastic variables with distributions depending on the pirate strategy. If user
i be innocent, the pirates cannot distinguish between column types i and i− 1, and consequently
Fi ∼ Fi−1.

The decoding algorithm of the original Boneh-Shaw scheme is based on hypotheses tests of
the null hypothesis ‘user i be innocent’. This hypothesis can be rejected if the auxiliary null
hypothesis Fi ∼ Fi−1 can be rejected. This gives a threshold such that if |Fi−Fi−1| is sufficiently
high, then user i can be accused. This provides hard input to the outer decoding algorithm.

A more efficient idea [12] is to use soft decision decoding. This means that the the inner
decoding returns a reliability vj for each j ∈ C1. A high reliability indicates that j is likely to be
a correct decoding, whereas a low value indicates that j is likely to be incorrect. We propose the
following

(vj : j ∈ C1) where vj =
Fj −Fj−1

r
. (1)

Observe that all the vj sum to 1 and vj ∈ [−1,1] for all j. Furthermore, if the pirates cannot see
symbol j, then E(vj) = 0.

This choice may seem odd. In the case that j is innocent, Fj is expected to be close to Fj−1,
making vj close to zero. Whether vj is close to +1 or −1, it is unlikely that j is innocent. To this
we can only say that this definition worked well through the analysis, as we shall see. We did try
other definitions, but the analysis became too technical to complete.

It was shown in [12] that the error probabilities are independent of the replication factor, and
the introduction of random errors does not change this. Consequently we fix r = 1 for the rest of
this paper.

On the outer code
Boneh and Shaw suggested to concatenate the BS inner code with a random code, which is
constructed by picking every symbol in every codeword and decode it with closest neighbour
decoding. The random code has to be kept secret by the vendor. Later [10] it has been shown that
both random codes and algebraic codes with large distance, like AG or Reed-Solomon codes, have
advantages as outer code. The original decoding of the outer code used closest neighbour, but in
[10] we argued the utility of list decoding of the outer code, i.e. returning all codewords within a
certain distance of the hybrid word after inner decoding.
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After inner decoding of each block, we form the q× n reliability matrix R = [ri,j] where the
i-th row is the vector v from inner decoding of the i-th block. The output of the soft decision list
decoder is a list L ⊆ C of codewords

L = {c : W (c) ≥ ∆n},

W ((c1, . . . , cn)) =
n∑
i=1

rci,i.

We employ the common assumption that the pirates make independent decisions in each column
(segment), such that all the Fi are independent and distributed as B(1,pi) for some probability pi.
This assumption is reasonable by the laws of large numbers, if there is at least a moderately large
number of columns indistinguishable for the pirates.

Using Rees-Solomon or AG outer codes, this list decoding can be implemented using the
Kötter-Vardy algorithm, with complexity O(logM).

It is an important property that the terms ri,ci of the sum are stochastically independent. Each
term is also bounded in the interval [−1,1] and has a fairly simple distribution. This will allow us
to use the well-known Chernoff bound in the error analysis.

Theorem 2 (Chernoff)
Let X1, . . . ,Xt be bounded, independent, and identically distributed stochastic variables in the

range [0,1]. Let x be their (common) expected value. Then for any 0 < δ < 1, we have

P

(
t∑

i=1

Xi ≤ tδ

)
≤ 2−tD(δ||x), when δ < x,

P

(
t∑

i=1

Xi ≥ tδ

)
≤ 2−tD(δ||x), when δ > x,

where

D(σ||p) = σ log
σ

p
+ (1−σ) log

1−σ

1−p
.

For an understanding of the proof of this bound, we recommend to read [8].

Error analysis
In this section, we shall bound the error probability for concatenated codes with Boneh-Shaw
inner codes and soft decision decoding as defined in the previous section. This analysis follows
the previous works without error-correction [12] and also works using hard decision [10]. The
error analysis considers the two fingerprinting layers jointly, and the resulting error bound will
depend on the parameters of both the inner and outer fingerprinting codes.

Consider the decoding of a single block, using the BS inner code. To each user is assigned a
stochastic variable Xγ = Fγ −Fγ−1. Since Fq = 1 and F0 = 0, we get that all the Xγ sum to 1, even
with the introduction of errors.

If j �∈ P and j �∈ {1, q}, then E(Xj) = 0, since Fj and Fj−1 are identically distributed. However,
for j = 1 we have Fj−1 = 0 and for j = q we have Fj = 1. Thus E(Xj) = pe for j ∈ {1, t}\P . This
means that user 1 and q, if they are innocent, have an increased expected decoding heuristic with
the introduction of errors. For the other users, the error probability does not change a thing.

Theorem 3 (Probability of failure)
Suppose there are at most t pirates, and that they have probability at most pe < 1/2 of making an

error in an undetectable position. Using the concatenated code with a BS inner code and soft input
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list decoding with threshold ∆< (1−2pe)/t, for the outer code, the probability of failing to accuse

any guilty user is given as

εI ≤ 2−nE, where E =D

(
1+∆

2

∣∣∣∣ t+1
2t

− pe
t

)
. (2)

This bound is independent of the choice of outer code.

We observe that for pe = 0, the above theorem reduces to the original result of [12].
Proof: The probability εI that the decoding algorithm outputs no guilty user, is bounded as

εI ≤ P

(
1
t

n∑
i=1

∑
c∈P

ri,ci ≤ ∆n

)
= P

(
n∑
i=1

Yi ≤ ∆n

)
.

where

Yi =
∑
c∈P

ri,ci
t

=
1
t

∑
c∈P

Fci −Fci−1.

Obviously ∑
γ∈Q

Fγ −Fγ−1 = 1.

Let Pi ⊆Q be the set of symbols seen by the pirates in position i, i.e. Pi = {ci : ∃(c1, . . . , cn) ∈ P}.
Write a = (minPi)−1, and b = maxPi. Then we have E(Fa) ≤ pe and E(Fb) ≥ (1−pe). Hence

E(
b∑

i=a

ri) ≥ 1−2pe,

and since E(ri,γ ) = 0 when γ �∈ Pi ∪{1, t}, we get

E(Yi) = E(
1
t

∑
c∈P

ri,ci ) ≥
1−2pe

t
,

Note that Yi ∈ [−1,1], so in order to get a stochastic variable in the [0,1] range, we set Xi =
(1+Yi)/2. Thus

εI ≤ P

(
n∑
i=1

Xi ≤
1+∆

2
n

)
.

If ∆ < (1−2pe)/t, the Chernoff bound is applicable, proving the theorem. �
The probability of failure as derived above is independent of the choice of outer codes. The

probability of false accusations on the other hand, must be derived separately for different classes
of outer codes. Below, we find this error rate for random outer codes, as suggested by Boneh and
Shaw.

Using random codes as outer codes, the probability of Type II errors is independent of pe.
We recall that each symbol of a codeword is drawn uniformly and independently at random. We
express this as the following theorem.

Theorem 4 (Error rate for random codes)
Concatenating a (q−1, q) BS inner code with a random outer code using soft input list decoding

with threshold ∆ > 1/q for the outer code, the probability of accusing an innocent user is given as

εII ≤ 2(RO logq−E)n, where E =D

(
1+∆

2

∣∣∣∣q+1
2q

)
.
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Proof: Let c �∈ P be an innocent user. The probability of accusing c is

π(c) = P

(
n∑
i=1

Yi ≥ ∆n

)
, (3)

where Yi = ri,ci where ci is drawn uniformly at random from C1. Recall that the ri,ci for i = 1, . . . , q
sum to 1. Hence E(ri,ci ) = 1/q. Like in the last section, we make a stochastic variable in the [0,1]
range,

Xi =
1+Yi

2
, (4)

E(Xi) =
q+1
2q

, (5)

and

π(c) = P

(
n∑
i=1

Xi ≥
1+∆

2
n

)
. (6)

�

Theorem 5
For any q > t, there is an asymptotic class of (t, ε)-secure codes with ε →∞ and rate given by

Rt ≈
D
(
t+1−2pe

2t || q+1
2q

)
q−1

, if
t+1−2pe

2t
>

q+1
2q

.

Proof: For asymptotic codes, εI → 0 if ∆< (1−2pe)/t, so we can take ∆≈ (1−2pe)/t. Likewise,
εII → 0 if ∆ > 1/q and

RO <
D
(
t+1−2pe

2t || q+1
2q

)
logq

.

Since RI = logq/(q−1), we get the theorem. �
Unfortunately, we cannot see any nice expression for the optimal value of q. Clearly, we

require q = Ω(t), and if q = Θ(t), we get Rt = Ω(t−3). The only scheme with Rt = Ω(t−3) is the
Tardos scheme with Rt = Θ(t−2), but that scheme is subject to adverse selection. Figure 3 gives
an impression of code rates for q = 2t,3t,4t.

Theorem 6
Suppose there are at most t pirates, and that they have probability at most pe < 1/2 of making

an error in an undetectable position. Concatenating a (q−1, q) BS inner code with a (n,2ROn,δn)
outer code using soft input list decoding with threshold ∆ for the outer code, the probability of

accusing an innocent user is given as

εII ≤ 2(RO logq−[1−t(1−δ)]D(σ||(1+pe)/2))n,

provided ∆ > t(1− δ), and

σ =
1
2
+

∆− t(1−δ)
2(1− t(1−δ))

.

Proof: Let c �∈ P be some innocent user. We want to bound the probability of accusing c,

π(c) ≤ P

(
n∑
i=1

ri,ci ≥ ∆n

)
. (7)
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Figure 3: Code rates for concatenated codes with BS inner codes and random codes for
varying underlying error rates and varying q for t = 2,3,5,10.

An innocent user c can match a given pirate in at most (1− δ)n positions. Thus there are at most
t(1− δ)n positions where c matches some pirate. For the purpose of a worst case analysis, we
assume that ri,ci = 1 whenever ci matches a pirate. There are at least N = [1− t(1− δ)]n positions
i1, . . . , iN , where ri,j = vj is given by (1) with Fj ∼ Fj−1. Thus we get

π(c) ≤ P

(
N∑
i=1

ri,ci ≥ τN

)
, (8)

N = [1− t(1−δ)]n, (9)

τ =
∆− t(1−δ)
1− t(1−δ)

. (10)

Clearly, τ increases in δ as well as in ∆.
Suppose ci is not seen by any pirate. Recall that if ci �∈ {1, q}, then Fci ∼ Fci−1 and

consequently E(ri,γ ) = 0, independently of pe. For ci ∈ {1, q} however, we get E(ri,ci ) = pe.
Setting Yi = (1+ ri,ci )/2, we get E(Yi) ≤ (1+pe)/2 and

π(c) ≤ P

(
N∑
j=1

Yj ≥
1+ τ

2
N

)
. (11)

The theorem follows by the Chernoff bound. �
For asymptotic codes, εI → 0 if ∆ < 1/t, so we can take ∆ ≈ 1/t. Likewise, εII → 0 if both

∆ > t(1− δ) and

RO <
1− t(1−δ)

logq
D(σ||(1+pe)/2).
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Using AG codes with

R = 1−δ− 1√
q−1

,

where q is an even prime power, we can get codes with RO solving the following

RO =
1− t

(
RO + 1√

q−1

)
logq

D

⎛
⎜⎝1

2
+

1
2
·

1− t2
(
RO + 1√

q−1

)
t− t2

(
RO + 1√

q−1

) ∣∣∣∣1+pe
2

⎞
⎟⎠ , (12)

0 <
1− t2

(
RO + 1√

q−1

)
t− t2

(
RO + 1√

q−1

) . (13)

The total rate is Rt(q) = RI ·RO where

RI =
logq
q−1

.

The number of pirates t, is a property of the resulting codes, whereas q is a control parameter
chosen so as to maximise Rt.

4 Conclusion
We have showed that an efficient collusion-secure code with error-correction can be built based on
the Boneh-Shaw code. The error-correction helps to build a complete watermarking/fingerprinting
scheme resistant to attacks on the watermarking layer. The impact of errors on the information
rate is surprisingly low.

We also note that, unlike past schemes for this model [7], we have incorporated all the
latest improvements of Boneh-Shaw, using soft-decision decoding and error-correcting codes. No
formulæ for the information rate are given in [7] so an exact comparison is omitted. However,
our information rate, even with 25% errors, are better than those of the original BS scheme with 0
error rate, and [7] did not introduce anything to obtain such improvement.

We expect to use the same techniques to make collusion-secure codes with error-correction
based on other known codes, such as [2, 13]. A more challenging problem is probably to make
good non-binary codes with error-correction.
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