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The Boneh-Shaw fingerprinting scheme is better
than we thought

Hans Georg Schaathun Member, IEEE,

Abstract—Digital fingerprinting is a forensic method against
illegal copying. The distributor marks each individual copy with
a unique fingerprint. If an illegal copy appears, it can be traced
back to one or more guilty pirates, due to this fingerprint. To
work against a coalition of several pirates the fingerprinting
scheme must be based on a collusion-secure code.

This paper adresses binary collusion-secure codes in the setting
of Boneh and Shaw (1995/98). We prove that the Boneh-Shaw
scheme is much more efficient than originally proved, and we
propose adaptions further improving the scheme. We also point
out some differences between our model and others in the
literature.

Index Terms—collusion-secure codes, digital fingerprinting,
copyright protection, traitor tracing

I. INTRODUCTION

Unauthorised copying and distribution of copyrighted ma-
terial has received increasing attention over many years, both
in research communities and in the daily press. Authors
and artists depend on their income from legal sales, and
unauthorised copying is often seen as a threat to these sales.
For the movie or music industry, this is a question of big
money.

Estimates of the losses due to illegal copying are generally
disputable. There is no generally accepted method to esti-
mate the sales that would have been achieved without illegal
copying. For example, it is sometimes claimed that illegally
distributed copies have a promotional effect which actually
increase sales. Still, it is clear that big money are at stake
and the issue receives interest from many different angles.
Several countries these days change their legislation to deal
more effectively with illegal distribution in new media.

Digital fingerprinting was introduced in [1], and given
increasing attention following [2]. A vendor selling digital
copies of copyrighted material wants to prevent illegal copy-
ing. Digital fingerprinting is supposed to make it possible to
trace the guilty user (pirate) when an illegal copy is found.
This is done by embedding a secret identification mark, called
a fingerprint, in each copy, making every copy unique.

The fingerprint must be embedded in such a way that it
does not disturb the information in the data file too much. It
must also be impossible for the user to remove or damage the
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fingerprint, without damaging the information contents beyond
any practical use. In particular, the fingerprint must survive any
change of file format (e.g. gif to tiff) and any reasonable lossy
compression. This embedding problem is essentially the same
as the problem of watermarking.

If a single pirate distributes unauthorised copies, they will
carry his fingerprint. If the vendor discovers the illegal copies
he can trace them back to the pirate and prosecute him. If
several pirates collude, they can to some extent tamper with
the fingerprint. When they compare their copies they see some
bits (or symbols) which differ and thus must be part of the
fingerprint. Identified bits may be changed, and thus the pirates
create a hybrid copy with a false fingerprint. Collusion-secure
coding is required to enable to trace at least one pirates where
a coalition of pirates have colluded.

Collusion-secure coding is also employed in traitor tracing
[3]. Whereas fingerprinting protects the digital data in them-
selves, traitor tracing protects broadcast encryption keys. Many
other related problems have been studied, but space does not
permit us to mention them.

A collusion-secure code can be probabilistic or combi-
natorial. Combinatorially collusion-secure codes are able to
successfully trace at least one pirate with probability 1. Using
probabilistic schemes, we are satisfied with successful tracing
with probability at least 1− ε for some small error rate ε.

In this paper, we study binary, concatenated, fingerprinting
schemes generalising and improving the approach of [2]. In
Section II, we will define the fingerprinting model, which we
refine a little compared to the past literature. In Section III, we
give the main result, which is an improved error analysis of
the Boneh-Shaw fingerprinting scheme and new variants of it.
Section IV gives further improvements in the two pirate case,
and we finish with a conclusion and comparison with other
schemes in Section V.

II. THE FINGERPRINTING PROBLEM

A. Preliminaries from coding theory

We use notation and terminology from coding theory. The
set of fingerprints is an (n,M)q code, which provides for up
to M buyers, uses an alphabet of q symbols, and requires
n such symbols embedded in the digital file. The Hamming
distance between two words x and y is denoted d(x,y),
and the minimum distance of a code C is denoted d. The
normalised minimum distance is δ = d/n. The rate of the
code is R = (logM)/n.

Closest neighbour decoding is any algorithm which takes
a word x and returns a word c ∈ C such that d(c,x)
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is minimised. This can always be performed in O(nM)
operations, and for some codes it may be faster.

For the error analysis, we will use the well known Chernoff
bound as given in the following theorem. See e.g. [4] for a
proof. The relative entropy function is defined as

D(σ||p) = σ log
σ

p
+ (1− σ) log

1− σ
1− p

. (1)

Theorem 1 (Chernoff) Let X1, . . . , Xt be bounded, indepen-
dent, and identically distributed stochastic variables in the
range [0, 1]. Let x be their (common) expected value. Then
for any 0 < δ < x, we have

P

(
t∑
i=1

Xi ≤ tδ

)
≤ 2−tD(δ||x).

We write B(n, p) for the binomial distribution with n trials
with probability p. If X is distributed as B(n, p), we write
X ∼ B(n, p).

B. The fingerprinting scheme

Let U denote the set of users. An (n,M)q fingerprinting
(FP) scheme is an ensemble S = {(CK , eK , AK) : K ∈ K},
where

1) K is called the key space, and a a secret key K ∈ K is
randomly chosen when the scheme is initialised.

2) CK is an (n,M) code.
3) eK is an encoding function eK : U ↪→ CK .
4) AK is called the tracing algorithm, taking as input any

q-ary vector x and outputting a subset L ⊆ U .
When a certain user buys a digital copy, the corresponding

fingerprint u ∈ CK is embedded in it. If several users collude
to make illegal copies, they can make copies with some
hybrid fingerprint x which combines information from their
respective fingerprints. The algorithm AK takes x as the input,
and outputs a set L ⊆ U of users to be accused. If successful,
the output is a non-empty subset of the pirates.

The fingerprinting model is made according to Kerchoff’s
principles, in that the key is random and everything but the
key is assumed to be public knowledge. If the entire system is
compromised, a new random key can be chosen for the same
scheme, and it will be secure for future applications (until the
key is again compromised).

The game proceeds in the following steps.
1) The vendor chooses the FP scheme S to use for the

product he is selling; this is the vendor strategy. We
assume that this is known to the pirates.

2) The key K is chosen at random, and kept secret by the
vendor.

3) The copies of the digital data are generated using the
fingerprinting scheme and the key, and distributed to the
users. A coallition P ⊂ U of t (potential) pirates is thus
assigned fingerprints eK(P ) ⊂ CK .

4) The coalition of potential pirates get together and com-
pare their copies. We let Y be a random variable
comprising all the information the pirates obtain at this
point. Generally 0 < I(Y ;K) < H(K), which means

that the pirates get some, but imperfect information
about the unknown variable K.

5) If P (Error|Y = y) is sufficiently low, the pirates seeing
y will opt out, without comitting any crime.

6) If the pirates choose to play, they choose a strategy for
garbling the fingerprint, make the copies, and sell the
copies with the false fingerprint x.

7) If and when an illegal copy is discovered, the vendor
runs the tracing algorithm AK(x) and prosecutes any
users traced.

Note that we have three outcomes of the game. The pirates can
choose not to play (Event 0). If they do play, we get a random
outcome, either Error where the pirates win, or ¬Error where
the pirates lose. Event 0 is not random; it is an unrestricted
choice of the pirates. Therefore, all probabilities will be taken
under the assumption that the pirates do play.

When the pirates choose to play, they will behave adver-
sarially, choosing the strategy that maximises their chance of
escape. Therefore we assume that the probabilities P (Error)
and P (Error|Y = y) are maximal over all pirate strategies.
The traditional definition of collusion-secure codes is based
on the unconditional probability of error, given no information
about K.

Definition 1 (Weak security) An FP scheme S is (weakly)
(t, ε)-secure, if PK(Error) ≤ ε for any t-set P ⊂ U .

We will sometimes say that CK is (t, ε)-secure if it is part of
a (t, ε)-secure scheme, when misunderstanding is improbable.

Remark 1 If, for each distinct (CK , AK), eK is uniformly
random over all possible encodings, then PK(Error) ≤ ε for
some t-set P ⊂ U implies that PK(Error) ≤ ε for any t-set
P ⊂ U . This is because the set of fingerprints eK(P ) ⊂ CK
becomes a random t-set CK , and it explains why some authors
assume that the pirates do not know their identities.

Unauthorised copying is a criminal act (in most countries),
and pirates that are caught will therefore be subject to pun-
ishment. The primary reason for assigning punishment is to
deter potential pirates. The vendor’s goal is not necessarily to
win the game (make the pirates lose). Deterring the pirates
(Event 0) obtaining sort of a stalemate where nobody wins
and nobody loses is perfectly satisfactory.

We expect that there is a threshold ep such that if the pirates
think the error probability is greater than ep, then they will
play. If it is less than or equal ep, then they will not. If this
is the case, we get Event 0 if P (Error|Y = y) < ep. Note
that a (weakly) (t, ep)-secure code is not sufficient to deter all
pirate coallitions of size t or less. This is why we introduce a
new and stronger definition.

Definition 2 (Strong security) An FP scheme S is strongly
(t, ε)-secure, if for any y the pirates could see, we have
P (Error|Y = y) ≤ ε for any t-set P ⊆ U .

Clearly a strongly t-secure FP scheme will deter any pirate
coallition of size at most t if ε ≤ ep. By abuse of language, we
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shall sometimes say that CK is (t, ε)-secure when the scheme
is.

Definition 3 If a scheme is (weakly) (t, ε1)-secure, then ε1 is
an a priori error bound. If it is strongly (t, ε2)-secure, then ε2
is an a posteriori error bound.

Note that ε1 ≤ ε2. Even though the explicit definition
of strongly t-secure codes is new, many previous scheme
Boneh-Shaw do meet the definition. Some authors bound
P (Error|P = p) for any p, which gives an error bound no
weaker than ε2.

Since the pirate can choose whether they want to play or
not, it is reasonable to assume that the coallitions playing
have a higher average chance of escaping than has the average
coallition. The economists call this adverse selection, and it
affects the following interesting probability

εA = P (Error|The pirates did play).

Of course, when the vendor finds an illegal copy, he knows that
the pirates have played, and it is interesting for him (and for the
court if the fingerprinting scheme is used as evidence), what
the error probability is under this condition. The following
lemmata gives some information about this.

Lemma 1 When the vendor obtains an illegal copy having
only the knowledge of the key K and the false fingerprint x,
the probability εA of getting an incorrect output from AK(x)
is at most the a posteriori error bound ε2.

Proof: Since ε2 bounds the conditional error probability
for any information the pirate could have, in particular it
bounds this probability for any information which would
induce the pirates to play. Hence ε2 also bounds the probability
of error under the condition that the pirates play.

Lemma 2 If P (Error|Y = y) not constant over all y, then
there is an a priori error bound ε1 such that ε1 < εA for some
pirate strategy.

Proof: Suppose ε1 is tight, then it is given as the average

ε1 =
∑
y

P (Y = y)P (Error|Y = y).

Suppose the pirates choose to play whenever P (Error|Y =
y) > ε1. Then we get that

εA =
∑
y

P (Error|Y=y)>ε1

P (Error|Y = y).

We clearly get that εA > ε1, since we have removed only
small terms from the average.

To summarise, if the pirates decide to do illegal copying
before they see their copies, their chance of escape is at most
ε1. For any pirate collusion of size at most t having compared
their copies, the chance of escape is at most ε2. Which error
bound is the most important, will depend on the application.

C. The marking assumption

The fingerprinting system must include some method to
embed the fingerprints in the digital data, in addition to the
fingerprinting code and tracing algorithm briefly described
above. Some security assumptions must be made about this
embedding in order to devise FP schemes. We will stick
to the Boneh-Shaw model throughout the paper; and this is
defined by the following Marking Assumption. It is hard to
construct general embeddings satisfying the assumption, but
some theoretical examples are suggested in [2], and one is
given as the example below.

Definition 4 (The Marking Assumption) Let P ⊆ C be the
set of fingerprints held by a coalition of pirates. The pirates
can produce a copy with a false fingerprint x for any x ∈
FC(P ), where

FC(P ) = {(c1, . . . , cn) : ∀i,∃(x1, . . . , xn) ∈ P, xi = ci}.

We call FC(P ) the feasible set of P with respect to C.

A position where the pirates see at least two symbols and
thus have a choice is called a detectible position.

Example 1 (Traitor Tracing) Collusion-secure codes are
used for traitor tracing [3], where the Marking Assumption
is satisfied as following. The system uses a q × n matrix of
permanent keys Kj,i. Each row corresponds to an alphabet
symbol and each column to a coordinate position. The user
with fingerprint (a1, . . . , an) receives the key Kai,i for every
i. The session key is the exclusive or of n elements s1 to
sn. An enabling block is transmitted at the start of each
session consisting of eKj,i

(si) for each i and j, where eK
is the encryption function for key K. To get the session key,
one key from each column of the matrix is required, and
that is exactly what each user has. When the pirates make
a pirate decoder box, they must supply it with a key for each
coordinate position from one of their true fingerprints, and
thus the marking assumption is satisfied.

Some authors use alternative Marking Assumptions. Some
models assume that the pirates can output any symbol in
a detectable position, or they may be allowed to output an
erasure (no valid symbol) in detectable positions. See [5], [6]
for details. Muratani [7] use a stronger assumption where the
pirates output each word in the feasible set, allowing much
shorter codewords.

The Marking Assumption may be too strong for many
applications. Some authors relax it by assuming that the pirates
have a certain probability pe of outputting a random symbol
from the alphabet in each column. Thus they call for codes
which are error-secure in addition to collusion-secure [8].

D. Two types of error

Let L ⊆ U be the output of the tracing algorithm and P ⊆
U the pirate collusion. We have defined an error to be the
event that L = ∅ or L 6⊆ P . Some fingerprinting schemes
distinguish between two types of errors.
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A Type I error (or failure) is the event that L ∩ P = ∅,
i.e. that the vendor fails to identify any guilty pirate. If the
tracing algorithm outputs one or more innocent users, i.e. if
L\P 6= ∅, then we say that we have an error of Type II.

In the context of criminal law, we know that Type II errors
is a serious matter. Frequent Type I errors means that we often
do not get useful output, but they do not affect the reliability of
the output which is obtained. If Type II errors are frequent, the
output cannot be trusted even when we have output. We will
sometimes say that a code is strongly (or weakly) (t, εI, εII)-
secure if the a posteriori (or a priori) probability of error is at
most εI for Type I and at most εII for Type II.

Our analysis will give separate bounds for Types I and
II. This is mainly because it is the simplest way to do the
proofs. Since many existing schemes have been analysed only
with one error bound, we will usually state results with one
error bound only, to simplify the presentation and allow for
comparison. In this case, the error bound is the sum of the
Type I and Type II bounds.

III. CONCATENATED SCHEMES

In this chapter we develop a general analysis of concate-
nated fingerprinting schemes. Such concatenation was applied
in [2], but our error analysis will prove that those constructions
have better error rate than originally proved. We make the
following formal definition of concatenated schemes. Note that
the involved code CK is a concatenated code in coding terms.

Definition 5 (Concatenated Fingerprinting Scheme)
Let SI = (CI

k, e
I
k, A

I
k) and SO = (CO

k , e
O
k , A

O
k ) be FP

schemes, where CI
k is (nI, q)2 and CO

k is (nO,M). Let
Q denote the alphabet of CO. A concatenated FP scheme
S = SO ◦ SI = (CK , eK , AK) consists of the following
elements. The key is a tuple K = (kO, k1, . . . , knO), where
kO is a key for SO and ki are keys for SI. The encoding is

eK(u) = eI
k1

(c1)||eI
k2

(c2)|| . . . ||eI
knO

(cnO),

where (c1, . . . , cnO) = eO
kO

(u) and u ∈ U.
(2)

Each segment eI
ki

(ci) of the word is called a block. The code is
CK = {eK(u) : u ∈ U} which is (nInO,M)2. The algorithm
AK first decodes each block using Aki

, and then decodes the
resulting word over Q using AkO .

Let RI and RO denote the rates of CI and CO respectively.
We demand that SI is strongly (t, ε)-secure, but our analysis

is otherwise oblivious to its structure. On the other hand, the
error analysis must be made separately for each type of outer
scheme, SO, but this scheme does not have to be collusion-
secure in itself.

We analyse two different kinds of outer codes, namely
random codes as suggested in [2] in Section III-B, and codes
with large minimum distance in Section III-D. The outer code
is list decoded with respect to the Hamming distance. The
probability of Type II errors is bounded for each choice of
outer codes. In Section III-C, we study parameters of the
Boneh-Shaw codes, i.e. using the inner code of [2] and random
outer codes.

The original concatenated Boneh-Shaw scheme will be
named BS-RC. The acronym before the dash indicates the
inner code, the Boneh-Shaw inner code, and the last letters
indicate the outer code, a random code. Other schemes dis-
cussed in this section are BS-RS with Reed-Solomon outer
codes, and BS-AG with asymptotic AG outer codes.

A. Decoding and Type I errors

We will use list decoding for the outer tracing algorithm
AkO .

Definition 6 A list decoding algorithm A for a code C takes
as input an n-word y and a threshold ∆ and returns the set

L = {c ∈ C|d(c,y) ≤ ∆n}. (3)

We have chosen list decoding because it gives us simple
proofs. It has the additional advantage that we often get to
trace several pirates. Observe that the closest neighbour of y
will be in the list L unless L = ∅. Hence if list decoding
is successful, then closest neighbour decoding is successful
too. Hence an application can use closest neighbour decoding
instead, without increasing the error rate.

Let F be the number of positions i where inner decoding
AI
ki

is incorrect. Clearly, F ∼ B(n, εin). The pirates match y
in at least (n−F )/t positions on average, which means that if
F ≤ t∆n−(t−1)nO, then at least one guilty pirate is caught.
The following theorem follows by the Chernoff bound.

Theorem 2 Let SI be a strongly (t, εin)-secure scheme, and
SO = (CO

kO
, eO
kO
, AO

kO
) a scheme where AO

kO
is list decoding

with threshold ∆. Then using S = SI ◦ SO, the probability of
identifying no guilty user is

εI ≤ P (F ≥ (1− t+ t∆)nO), F ∼ B(nO, εin),

and

εI ≤ 2−nOD(1−t+t∆||εin), if εin < 1− t+ t∆.

Corollary 1 If D(1 − t + t∆||εin) > 0, then the probability
of Type I error tends to zero with increasing code length nO.

Note that the bound on εI depends only on nO, ∆, t, and
εin. It is oblivious to SO. The Type II error rate εII will
depend on the design of SO. The inner code keys ki have
to be independent so that errors in two distinct blocks are
independent events. Otherwise the Chernoff bound would not
be applicable.

B. Random codes (RC)

Boneh and Shaw used random codes for SO. Let kO be an
M×n matrix over Q were every entry is chosen independently
and uniformly at random. Suppose some arbitrary ordering on
U . The encoding ekO maps the i-th user to the i-th row of kO,
so that CO

kO
is the set of rows from kO.
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Theorem 3 Let S = SO◦SI be a scheme using random codes
for SO. If 1/q < 1 −∆, the probability of including a given
innocent user c in the output list is bounded as

P (c ∈ L) ≤ ε̂ ≤ 2−nOD(1−∆||1/q),

and the total Type II error rate is bounded as

εII ≤ 2nO(RO log q−D(1−∆||1/q)).

Proof: Consider the output y from inner decoding and an
innocent user c 6∈ P . Let X = nO − d(c,y). Clearly X is a
stochastic variable with distribution B(nO, 1/q), and P (c ∈
L) = P (X ≥ nO −D). The error probability is bounded as

εII ≤
∑

c∈C\P

P (c ∈ L) ≤M · P (X ≥ nO(1−∆)),

and the theorem follows by Chernoff’s bound.

Corollary 2 The Type II error rate tends to zero with increas-
ing length if RO < D(1−∆||1/q)/ log q and 1/q < 1−∆.

One great advantage of random codes is that they can be
made for any number of users quite trivially. Observing the
error bounds, we note that εI is unaltered, and εII degrades
gracefully when M increases.

C. The Boneh-Shaw concatenated code

The following (M, ε)-secure scheme SI was used in [2].
Let CI

ι be a (r(M −1),M)2 code with a codebook consisting
of M − 1 distinct columns, each replicated r times. A set of
identical columns will be called a type. Every column has the
form (1 . . . 10 . . . 0), such that the i-th (1 ≤ i ≤ M ) user has
zeroes in the first i− 1 types and a one in the rest.

The key k maps the code CI
ι onto an equivalent code Ck by

permuting the columns. View ι as the identity. We can see that
unless user i is a pirate, the pirates cannot distinguish between
the (i − 1)-th and the i-th type. Hence they have to use the
same probability of choosing a 1 in both these types. The
tracing algorithm AI

kI
uses statistics to test the null hypothesis

that user i be innocent. The output is some user(s) for whom
the null hypothesis may be rejected.

The key size in bits is

log #K = log
(r(M − 1))!

(r!)M−1
.

The probability of accusing a given innocent user is bounded
as

ε̂ ≤ 21− r
2M2 .

Theorem 4 (Boneh and Shaw) The BS inner code with
replication factor r is strongly (M, ε)-secure whenever r ≥
2M2 log(2M/ε).

Let BS-RC be the scheme S = SO◦SI with SI as described
above and a random code with list decoding for SO. There
are several control parameters which may be used to tune the
performance of the system. The inner code cardinality q is
the trickiest one. Most of the time we will follow Boneh and

t = logM Boneh and Shaw New analysis
10 6.64 · 108 3.06 · 108

15 3.91 · 109 1.79 · 109

20 1.40 · 1010 6.44 · 109

25 3.80 · 1010 1.77 · 1010

30 8.68 · 1010 4.09 · 1010

Table I
SOME LENGTHS WHEN t = logM .

Shaw and set q = 2t. Obviously nO and r control a trade-
off between code length and error rate. Finally, we have ∆ to
control the trade-off between the two error types.

Theorem 5 If we use

q = 2t, ∆ =
t

t+ 1
, εin =

1
2t
,

then BS-RC is a strongly (t, ε)-secure FP scheme accommo-
dating M users requiring length

n = (2t− 1)
⌈
8t2(3 + 2 log t)

⌉
nO,

where

nO =
max{− log εI, logM − log εII}

D( 1
t+1 ||

1
2t )

.

Asymptotically, the length is

n = Θ
(
t4(log t)(logM − log ε)

)
.

In this theorem, ∆ is made only slightly greater than the
minimum value of (t− 1)/t. By Corollary 1 we require εin <
1/(t+1), but to make nO linear in t, εin must in fact be much
smaller than 1/(t+ 1).

Proof: Theorems 2 and 3 give two bounds on nO, so we
get

nO = max

{
− log εI

D( 1
t+1 ||

1
2t )

,
logM − log εII
D( 1

t+1 ||
1
2t )

}
.

It can be shown that D(1/(t + 1)||1/(2t)) = Θ(t−1), and
hence

nO = Θ(t(logM − log ε)).

For the inner code, we have

nI = (q − 1)2q2(log(2q)− log εin)

= (2t− 1)8t2(3 + 2 log t) = Θ(t3 log t).

The theorem follows since n = nInO.
Considering asymptotic classes of codes, ∆ can be made

smaller. The following theorem gives the better rates.

Theorem 6 There exists an asymptotic class of BS-RC FP
schemes with exponentially declining error rate for any rate
R satisfying

R <
D( 1−2q2−r/(2q2)

t ||1/q)
r(q − 1)

, (4)
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BS-RC Theoretical BBK
t q r Rate Rate
2 4 238 2.42 · 10−4 0.016
3 5 410 3.62 · 10−5 0.00102
4 7 847 9.62 · 10−6 1.01 · 10−4

5 9 1457 3.53 · 10−6 1.25 · 10−5

7 13 3223 8.04 · 10−7 2.76 · 10−7

Table II
ASYMPTOTIC RATES AND MAXIMISING VALUES OF q AND r FOR THE

BS-RC CODES FOR SOME NUMBERS OF PIRATES.

if q and r are natural numbers such that (1−2q2−r/(2q
2))/t >

1/q.

Proof: Asymptotically, εin can be taken arbitrarily close
to 1− t+ t∆, or in other words

∆ ≈ t− 1 + εin
t

=
t− 1 + 2q2−r/2q

2

t
.

By Theorem 3, the outer rate can be chosen arbitrarily close to
D(1−∆||1/q)/ log q. We get the following component code
rates

RO ≈
D( 1−2q2−r/2q2

t ||1/q)
log q

, RI =
log q

r(q − 1)
,

which gives the total rate as stated in the theorem.
In Table II, we can see some asymptotic rates for our

codes, as well as those of [5] (BBK). We note that BBK has
the better rate for few pirates, whereas ours is better against
seven pirates. It is also interesting to note that 2t is not the
maximising value of q asymptotically, except for t = 2.

D. Outer code with large distance

We recall that codes with sufficiently large distance give
combinatorially secure codes. The BBK scheme introduced
outer codes where the minimum distance is large enough
not only to successfully trace, but also to correct for some
decoding errors from the inner decoding. We shall see how
this can be combined with strongly (t, εin)-secure inner codes
following the lines of BS-RC.

Let SI be a strongly (t, εin)-secure scheme as before. Let
ε̂in be an upper bound on the probability of accusing a given
innocent user c. Even though this is a parameter traditionally
not explicitly stated for constructed fingerprinting schemes, it
is often known by a bound at least as good as that for εin,
which is often bounded as εin ≤Mε̂in.

We use an outer scheme SO = {(CO, eO, AO)} with a
constant key. The encoding eO is arbitrary and the tracing
AO is list decoding with threshold ∆ as before.

Let δnO be the minimum distance of CO, and P =
{a1, . . . ,at} ⊆ CO a pirate coalition. Consider a false
fingerprint x after inner decoding and an arbitrary innocent
user c 6∈ P . For each i, c matches ai in at most n(1 − δ)
positions. If inner decoding were perfect, x would match c in
at most nt(1− δ) positions.

First we study the probability π(c) that an innocent user c
be accused. Let V be the set of coordinates where c is different

from any pirate, and let V C be the complement, i.e. the set
of positions where c match at least one pirate. Let Xi be a
stochastic variable which is one if and only if ci = xi, and
s(x, c) the total number of such matches. We get that

s(c,x) =
∑
i∈V

Xi +
∑
i∈V C

Xi ≤
∑
i∈V

Xi + #V C .

We have #V C ≤ nt(1− δ). If we let V ′ ⊆ V be any subset
of size N = n(1− t(1− δ)), we get

s(c,x) ≤ X + nt(1− δ), where X =
∑
i∈V ′

Xi.

We have that Xi is 1 with probability ε̂in and 0 otherwise. We
get

ε̂ ≤ P (s(c,x) ≥ (1−∆)n) ≤ P
(
X ≥ (1−∆)− t(1− δ)

1− t(1− δ)
N

)
.

Using Chernoff, we get the following theorem.

Theorem 7 The probability of accusing a given innocent user
for S = SO ◦ SI as described in this section is

ε̂ ≤ 2−(1−t(1−δ))nD(σ||ε̂in),

if

σ =
(1−∆)− t(1− δ)

1− t(1− δ)
> ε̂in.

This error bound is rather pessimistic. We assume that
the hybrid fingerprint matches the innocent user in every
block where one pirate matches the innocent. This pessimistic
approach also means that we do not need any further secret
key, except the inner code key for each block.

Combining Theorems 2 and 7, we get that

δ > 1− 1− εin − tε̂in
t2(1− ε̂in)

. (5)

It follows immediately that q = Ω(t2). A good candi-
date as an outer code with large minimum distance is the
[nO, kO, nO − kO + 1]q Reed-Solomon (RS) codes, which
can be decoded with the Guruswami-Sudan algorithm, with
complexity O(nO).

Example 2 An RS outer code can be combined with a BS
inner code. Take for instance, t = 20 and M = 2t. Let q = 210

and r = 3.1 ·107, and use a (r(q−1), q) BS as inner code. As
an outer code, we use a [690, 2]q generalised Reed-Solomon
code. With a decoding threshold of ∆ = 0.958, we get a total
error rate of ε ≤ 0.356 ·10−10. The total length is 2.139 ·1010.
These parameters are inferior to BS-RC, but still good enough
to be interesting for application where decoding complexity is
important.

Concatenations of BS inner codes and RS outer codes will
be denoted BS-RS. We have nI = Θ(q3 log q) from the
inner code, and q = Ω(t2) due to the distance requirement.
This gives us n = Ω(t6 log t), which is inferior to BS-RC.
Furthermore, it is rather difficult to find the optimal choices
for the various parameters.
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Asymptotic classes of codes are possible using asymptotic
AG codes as by the following theorem. The problem with
this approach is that a large inner code is needed, and the
codewords of the Boneh-Shaw code get very long. Using AG
and RS codes would be much more effective if the inner code
can be improved.

Proposition 1 If there is an (nI, q) strongly (t, εin)-secure
code where the probability of accusing a given innocent user is
at most ε̂in, then there is an asymptotic family of strongly (t, ε)-
secure codes with any rate less than RO(log q)/nI, where RO

solves

RO log q = D

( 1−εin
t − t

(
RO + 1√

q−1

)
1− t

(
RO + 1√

q−1

) ∣∣∣∣ ε̂in),
and where ε vanishes exponentially.

Proof: We see from Theorem 2, that exponentially de-
clining εI is obtained if ∆ > 1 − 1/t + εin/t, but ∆ can be
taken arbitrarily close to this bound. From Theorem 7, we get
that εII will decline exponentially if RO log q < D(σ||ε̂in),
where

σ =
(1−∆)− t(1− δ)

1− t(1− δ)
≈

1−εin
t − t(1− δ)
1− t(1− δ)

.

Again RO can be taken arbitrarily close to this bound. Using
AG outer codes, we get

δ ≈ 1−RO −
1

√
q − 1

,

giving

σ ≈

1−εin
t − t

(
RO + 1√

q−1

)
1− t

(
RO + 1√

q−1

) ,

Now, RO can be taken arbitrarily close to the solution of the
equation stated in the proposition.

IV. FIGHTING TWO PIRATES

We mentioned that the BS replication codes may not be the
ideal choice for inner codes. For two pirates we have good
alternatives, which we consider in this section.

It was proved in [9] that socalled separating codes give
(2, ε, 0)-secure schemes (CK , eK , AK). The code CK is
equivalent to a (2, 2)-separating base code Cι, eK is arbitrary,
and AK is an exhaustive search through all possible two-sets
P̂ ⊆ CK . The [31, 5, 16] Simplex code is (2, 2−11, 0)-secure,
and the [126, 14] dual BCH code is (2, 0.292·10−10, 0)-secure.

We define three new concatenated schemes, all using sep-
arating inner codes as described above. The SS-RC scheme
uses random outer code as described in Section III-B. The
SS-RS and SS-AG codes use respectively Reed-Solomon and
AG codes as described in Section III-D.

A. Asymptotic constructions

The best asymptotic rate offered for t = 2 in [5] was 0.015,
using the [126, 14] BCH-dual as inner code and an AG outer
code. On the other hand, [9] offered a rate of 0.026 for an
asymptotic class (2, 2)-SS.

Theorem 8 The SS-RC scheme with the [126, 14] punctured
dual of the two-error-correcting BCH code as inner code,
forms an infinite class of (2, ε)-secure schemes with rate R,
for any R < 0.0476 and exponentially declining error rates
given as

εI ≤ 2−n
D(2∆−1||0.3·10−10)

126 and εII ≤ 2n(R−D(1−∆||2−14)/126),

where ∆ may be chosen freely in the interval 1/2 + 1.5 ·
10−11 < ∆ < 1− 2−14.

The algebraic structure of SS-AG makes it possible to take
advantage of the fact that the inner codes have εII = 0 and
make concatenated schemes which also have εII = 0.

For any innocent user c, we have s(c,x) ≤ 2(1 − δ)nO.
Hence c will never be accused if ∆ > 1 − 2(1 − δ).
Asymptotically, δ can be taken arbitrarily close to (1 + ∆)/2.
The bound on εI is found from Theorem 2,

εI ≤ 2−nOD(−1+2∆||εin).

It is necessary that ∆ > (1 + εin)/2, which gives us

δ ≈ 1/2 + (1 + εin)/4.

The outer code rate can be brought arbitrarily close to

RO ≈ 1− δ − 1
√
q − 1

≈ 1
2
− 1 + εin

4
− 1
√
q − 1

.

The [126, 14] inner code, gives RO ≈ 0.242 and overall rate
0.0269. This is not as good as using random codes, but it is
better than the BBK scheme [5], and like BBK, it can be GS
decoded in time O(logM).

An alternative inner code is the [15, 4, 8] code. This is too
small for AG codes, but it works well with random codes.

Theorem 9 The SS-RC scheme with a [15, 4, 8] inner code
forms an infinite class of (2, ε)-secure codes with rate R, for
any R < 0.0688, and exponentially declining error rates given
as

εI ≤ 2−n
D(2∆−1||1/140)

15 and εII ≤ 2n(R−D(1−∆||1/16)/15),

where ∆ may be chosen freely in the interval 1/2 + 1/280 <
∆ < 15/16.

Corollary 3 The SS-RC codes with [15, 4, 8] inner codes are
probabilistically (2, ε)-secure with length

n = 15
⌈

max
{

log εI
D(2∆− 1||1/140)

,
log εII − logM
D(1−∆||1/16

}⌉
,

for any ∆ such that 1/2 + 1/280 < ∆ < 15/16.
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Inner code Outer code Concatenated code Error rate
[31, 5] [4, 2]32 [124, 10] 0.2 · 10−12

[31, 5] [6, 3]32 [186, 15] 0.2 · 10−11

[31, 5] [8, 4]32 [248, 20] 0.3 · 10−11

[31, 5] [10, 5]32 [310, 25] 0.7 · 10−11

[31, 5] [12, 6]32 [372, 30] 0.1 · 10−10

Table III
SOME SS-RS CODES.

logM RS-RC Simplex SS-RC SS-RS Tardos LBH
10 299 889 1 023 1 305 124 12 000 25 884
15 334 359 32 767 1 455 186 13 600 28 878
20 367 359 1 048 575 1 545 248 14 800 31 872
25 401 001 225 − 1 1 605 310 16 400 34 867
30 435 471 230 − 1 1 695 372 17 600 37 861

Table IV
CODE LENGTHS AGAINST TWO PIRATES FOR 1000 TO A BILLION USERS

AND ERROR RATE ε ≤ 10−10 .

B. Practical codes

In Table IV, we present code lengths for 1000 to a billion
users with the schemes we know. The RS-RC codes are
computed with q = 4, εin = 0.002. The error rates were
set such that both εI and εII both are less than 10−10/2. We
used ∆ = 0.655 for 210 users, ∆ = 210/320 for 215 users,
∆ = 52/80 for 220 users, ∆ = 41/64 for 225 users, and
∆ = 203/320 for 230 users. Also the [126, 14] and [254, 24]
BCH duals are (2, 10−10)-secure, but these do not fit well in
the table.

Constructions are shown in Table III, and the general result
is given in the following theorem.

Theorem 10 A concatenated code of an (2, εin, 0)-secure
inner code and a [nO, kO]q RS code is 2-secure with εII = 0
and

εI ≤ P (Y ≤ 2kO − 3), where Y ∼ B(nO, 1− εin). (6)

Tracing is done with the Guruswami-Sudan algorithm.

Proof: We have εI ≤ P (X > nO(1 − 2(1 − δ)) + 1)
where X ∼ B(nO, εin), from the proof of Theorem 2. Setting
Y = nO −X gives the theorem.

There is a variant from [10] using Simplex inner codes,
Reed-Solomon outer codes, and a more complicated inner
decoding algorithm.

V. OTHER KNOWN SCHEMES AND CONCLUSION

We have studied concatenated collusion-secure codes. As
inner codes we suggest separating codes in the two pirate case,
and the Boneh-Shaw inner code in the general case. As outer
codes, we propose random codes, Reed-Solomon codes, or
asymptotic AG codes. One of the schemes, BS-RC, is the
classic of [2], but our analysis show length can be less than
previously assumed. Samples for a thousand to a billion user
show a reduction by a factor of about 2.1.

We know of one other strongly (t, ε)-secure scheme for our
model, namely the BBK scheme of [5]. The BBK scheme

is very good against a few pirates. Against sufficiently many
pirates the Boneh-Shaw based schemes are better. Asymptot-
ically, BS-RC has the best rate for seven pirates and more.
Against two pirates, our construction of SS-RS appears to give
the best codes for a thousand to a billion users, whereas SS-RC
has the best known asymptotic rate.

There are many other fingerprinting schemes in the litera-
ture, but most of them use different Marking Assumption, and
thus fall outside the scope of this paper. There are two schemes
which are weakly (t, ε)-secure under the Boneh-Shaw Marking
Assumption, due to Tardos [11] and LBH [12]. Tardos has a
code length of n = 100t2 ln(M/ε), giving it the best known
rate for many parameters. LBH is very good against three
pirates but n = Θ(2t).

The best decoding complexity in M is achieved when
we can use the Sudan-Guruswami algorithm, that is when
using RS or AG outer codes. This includes the BBK scheme,
and gives O(logM). Using random codes, i.e. for BS-RC
and SS-RC as well as Tardos, a linear search through the
code is needed for decoding. Decoding of BBK however, is
exponential in t, and this problem is avoided by BS-RS. Thus,
against many pirates, BS-RS has the most efficient decoding
algorithm known, even for weak (t, ε)-security.

An interesting open problem is lower bounds on the code
length in terms of t and M . The few known bounds are
independent of M . Another open issue is optimising the
construction parameters of our schemes.
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