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On the Assumption of Equal Contributions in
Fingerprinting

Hans Georg Schaathun

Abstract—With a digital fingerprinting scheme a vendor of
digital copies of copyrighted material marks each individual copy
with a unique fingerprint. If an illegal copy appears, it can be
traced back to one or more guilty pirates, due to this fingerprint.
A coalition of pirates may combine their copies to produce an
unauthorised copy with a false, hybrid fingerprint.

It is often assumed in the literature that the members of the
collusion will make equal contributions to the hybrid fingerprint,
because nobody will accept an increased risk of being caught.
We argue that no such assumption is valid a priori, and we show
that a published solution by Sebé and Domingo-Ferrer can be
broken by breaking the assumption.

Index Terms—Digital fingerprinting, collusion-secure code,
watermarking, collusion-attack, scattering codes
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I. BACKGROUND

The problem of digital fingerprinting was introduced in
[1], and has received quite some attention following [2]. A
vendor of digital copies of copyrighted material wants to
prevent unauthorised copying. Digital fingerprinting makes it
possible to trace the guilty user (pirate) when an illegal copy
is found. This is done by embedding a secret identification
mark (fingerprint) in each copy, making every copy unique.

Typically a robust watermarking (WM) scheme is used to
hide the fingerprint in the file. WM schemes are designed to
hide any message in a file, in such a way that they can be
recovered, even after being subject to noise, signal processing
operations, or even malicious attacks.

If a single pirate distributes unauthorised copies, they will
carry his fingerprint. If the vendor discovers the illegal copies
he can trace them back to the pirate and prosecute him.
However, a collusion of users can compare their copies, and
thereby find regions which differ and hence must be part of
the fingerprint. A simple attack is to cut and paste segments
from their individual copies, to produce a hybrid copy where
the fingerprint does not match any of the colluders’.

Many authors [3], [4] assume that a collusion will always
make a hybrid by combining equal shares from each of their
fingerprints. This is based on the idea that the more the user
fingerprint resembles the hybrid, the more likely the user is to
be accused. Obviously nobody would accept a higher risk of
being accused.

The assumption may be correct when closest neighbour or
correlation decoding is used [3], but in general it is not valid.
Obviously, if we prove that the system is secure assuming
a certain user behaviour, then we are sure that a malicious
(and intelligent) user will find some other behaviour. This is
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illustrated by the scattering codes [5], and we shall prove that
they are indeed not secure when the users are not restricted to
equal contributions.

The purpose of this paper is to highlight how important it
is in information security, not to jump to conclusions about
user behaviour. Any statement about user behaviour must be
demonstrated based on the actual system.

II. COLLUSION-SECURE CODES

A common model for fingerprinting combines a WM
scheme with a collusion-secure code (CSC) [3]. An (n,M)q

code C is a set of M words (c1, . . . , cn) over a q-ary alphabet
Q. Each user is associated with a fingerprint (word) c ∈ C.
The file is divided into n segments, and each symbol ci is
embedded independently in a corresponding segment.

The code C is often viewed as an n × M matrix called
the codebook, where the rows are codewords. Each column
corresponds to a segment of the file.

A collusion of t pirates will have a set P ⊆ C of fingerprints.
We will also think of P as an n×t matrix, and refer to columns
of P . A column i, 1 ≤ i ≤ n, is detectable if more than one
element of Q occurs in column i of P . We will assume that
the correspondence between file segments and code columns
is chosen pseudo-randomly by the vendor and kept secret [6].
Hence the colluders have no means of knowing which columns
they detect.

By comparing their copies, the pirates are able to produce
an unauthorised copy with a hybrid fingerprint x ∈ Qn.
The pirates choose an attack function A : Qn×t → Qn,
possibly stochastic, taking the pirate fingerprints P as input
and returning the hybrid fingerprint x.

The set of hybrid fingerprints producible by P is called the
feasible set FC(P). This restricts the attack function, so that
A(P) ∈ FC(P). The most common model, due to [2], assumes
that

FC(P) = {(c1, . . . , cn) : ∀i,∃(x1, . . . , xn) ∈ P, xi = ci}.

In other words, each symbol xi in the hybrid fingerprint x
must occur in the i-th column of P . This is known as the
Marking Assumption.

A tracing algorithm for the code C is any algorithm T :
Qn → {L : L ⊆ C}. The input is the hybrid fingerprint x
from an unauthorised copy, and the output L is a list of users
who are accused of the copyright violation. If P is a set of
pirate fingerprints and A is an attack function producing x =
A(P), then T is successful if L ⊆ P and L 6= ∅. If T is not
successful, we say that there is an error. A (probabilistically)
collusion-secure code is one with a tracing algorithm with
bounded error probability.

III. SCATTERING CODES (SC)

Scattering codes were introduced in [5], [7] and used in
conjunction with a simplex code to give a probabilistically
3-secure code. An alleged attack [8] was rebutted in [6].

The scattering code SC(r, t) is a probabilistic encoding of
a single bit. Each bit value is encoded as one out of t possible
words, chosen uniformly at random. The code has 2t + 1
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Encodes Zone A Zone B Zone C

1
1111 1111 0000 0000 0000 0000 0000
1111 0000 1111 0000 0000 0000 0000
1111 0000 0000 1111 0000 0000 0000

0
0000 0000 0000 0000 1111 0000 0000
0000 0000 0000 0000 0000 1111 0000
0000 0000 0000 0000 0000 0000 1111

Table I
THE SCATTERING CODE SC(4, 3).

A B1 B2 B3 C1 C2 C3

r bits r bits r bits r bits r bits r bits r bits
1111 1111 0000 0000 0000 0000 0000
1111 0000 1111 0000 0000 0000 0000
0000 0000 0000 0000 1111 0000 0000

Table II
THREE PIRATE CODEWORDS.

distinct columns replicated r times. We divide the columns into
three zones. Zone A has r identical columns where a word has
one if and only if it encodes one. Zone B has t distinct columns
of weight one replicated r times, and all words encoding zero
are zero. Zone C is similar, with t distinct columns of weight
1, and words encoding one are zero. Table I gives an example.

As part of the embedding, the fingerprint is xor-ed with
a random, secret bit string k. Similarly, the extracted hybrid
fingerprint is xor-ed with k before descattering. The effect of
this is that the colluders cannot tell whether a segment hides
a 0 or a 1; they can only tell whether or not two segments are
different. (This randomisation prevents the attack from [8].)

Assuming that we detect a hybrid fingerprint produced by
three colluders, the following decoding algorithm aims to
recover a symbol seen by at least two of the colluders.

Algorithm 1 (Descattering [5]) The decoding algorithm for
scattering codes (descattering) uses the first applicable rule in
the following list. One block is one set of r identical columns.

1) If there are at least two blocks of Zone B with at least
one one-bit, then decode as 1.

2) If there are at least two blocks of Zone C with at least
one one-bit, then decode as 0.

3) If there are more ones than zeroes in Zone A, then
decode as 1.

4) If there are more zeroes than ones in Zone A, then
decode as 0.

5) With the same number of zeroes and ones in Zone A,
decode as erasure.

It is easy to validate that the algorithm is always correct if
the rows of P encode the same bit. Table II shows a typical
example where the collusion see two different bits. We can
see that if the pirates use a minority choice strategy with high
probability, they will probably output at least one 1-bit in each
of B1 and B2, and decoding rule 1 will cause decoding to 1.
If they use a majority choice strategy with high probability,
they are likely to produce a majority of ones in block A, and
cause correct decoding of 1 by Rule 3. In the lemma below,
we will establish the exact probability of correct decoding.

In [7], attacks were considered where the colluders make
independent, random choices for each segment. We describe
the strategy as a tuple (p1, p2, p3) where pi is the probability
that the attack outputs the bit seen by two colluders (majority
choice) in a column where colluder no. i differs from the other
two. Due to the assumption of equal contributions, [7] assumed
p1 = p2 = p3. The following lemma is a generalisation of a
result from [7], [5]. The proof is a trivial extension of the
original, but is included for completeness.

Lemma 1 Let a1,a2,a3 be three codewords held by the
collusion, where ai encodes the opposite value of the other
two codewords. Suppose the pirates pick the majority bit with
probability pj in any column where user j is the minority.
Then the probability of correct descattering ri is given as

ri = 1−
1 + (t− 1)(

∑
j 6=i p

r
j −

∏
j 6=i p

r
j)

t
·

br/2c∑
j=0

(
r

j

)
pj

i (1− pi)r−j .

Proof: We prove the lemma for i = 3, assuming that a3

encodes a 0. The general case follows by symmetry.
We consider first the case where a1 6= a2. Suppose the

pirate codewords are as depicted in Table II. In order to get
a decoding error, both Rule 1 and 3 have to fail. The first
rule fails if least one of Block B1 and B2 is all zero, and this
happens with probability

P1 = pr
1 + pr

2 − pr
1p

r
2.

The other rule fails if Zone A has a majority of zeros, which
happens with probability

P3 =
br/2c∑
j=0

(
r

j

)
pi
3(1− p3)r−j .

The two events are independent, so the error probability is
P1 · P3.

If a1 = a2, there is only one block Zone B, say B1,
where the pirates see two different bits. Hence decoding Rule
1 always fails, and we have a decoding error with probability
P3.

For each bit, one of the t codewords is chosen uniformly at
random. Hence P (a1 = a2) = 1/t, and we get the following
total error probability,

PE = P3 ·
(t− 1)P1 + 1

t
,

which is equivalent to the formula in the theorem. Note that
the error probability increases in p1 and p2 and decreases in
p3.

If p1 = p2 = p3 =: p, then clearly r1 = r2 = r3 =:
ρ(p) by symmetry. The worst-case probability of successful
descattering, p∗(r, t) := minp ρ(p), is calculated in [5].

In [5], a scattering code S was concatenated with a sim-
plex code C as outer code. In other words, each user was
represented by a binary codeword c ∈ C, and each bit of c
was encoded using S. The decoder would first descatter block
by block, and then decode the resulting vector with respect
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Strategy
Innocent user (111) (001) (010) (100)

c1 = (1000) (0110) (0000) (1100) (1010)
c2 = (0100) (1010) (0000) (1100) (0110)
c3 = (0010) (1100) (0000) (1010) (0110)
c4 = (1110) (0000) (1100) (1010) (0110)

Table III
EXAMPLE OF THE STRATEGIES IN THE PROOF OF THEOREM 1.

to C using closest neighbour decoding. It was proved that if
the descattering is successful with sufficiently high probability,
then the error probability of the outer decoding can be made
arbitrarily close to 0. As we shall see, this result is only valid
for strategies (p, p, p).

Remark 1 Closest neighbour decoding invariably returns one
and only one codeword which is accused. There is no dis-
tinction between false negatives and false positives. An error
means that the returned user is innocent, and both a false
positive and a false negative are implied. If the returned user
is guilty, we say that decoding is correct, but there are still
two unidentified members of the collusion (false negatives).

We can view the outer code as an fingerprinting code in
itself. For a column of C where colluder i has a fingerprint
different from the other two, we can define a probability ri
that the resulting hybrid fingerprint after descattering matches
the other two colluders. This is the probability ri given in
Lemma 1. In effect, we get a colluder strategy (r1, r2, r3)
with respect to the outer code.

Theorem 1 A fingerprinting scheme with scattering inner
codes and a linear outer code has error rate at least 1/4
if the pirates use an optimal strategy, regardless of the outer
decoding algorithm used.

In particular, the simplex code C is linear. In the case of
list decoding, an error rate of 25% means that, on average,
25% of all accused codewords are false positives.

Proof: We propose a mixed strategy where the colluders
choose a pure strategy (p1, p2, p3) uniformly at random from
{(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}. Observe that each of
these four strategies gives (r1, r2, r3) = (p1, p2, p3).

Consider three linearly independent codewords c1, c2, c3,
and c4 = c1 + c2 + c3. By linearity c4 ∈ C. Any collusion
of three out of these four codewords using our proposed
strategy will produce the same four false fingerprints with
equal probabilities. Hence when one of these false fingerprints
is detected, there are four users who are equally likely to be
guilty, and one of them is innocent.

Example 1 Table III shows an example of the strategies used
in the proof. Since the attack works independently on each
column, we have truncated the codewords to display each
column type (up to equivalence) once. The first column shows
the four codewords, and each row then shows the four hybrid
words generated when the corresponding user is innocent
(by the other three codewords). Note that each one of the

codewords the decoder can observe appears once in each row.
Consequently any one of the four users may be innocent.

Remark 2 The problem with the original construction is
clearly in the outer code. Our attack only works because the
outer code is linear. It was proved in [9], [10], that a secure
construction can be made by using a non-linear outer code
(so-called (2, 2)- and (3, 1)-separating codes). Unfortunately,
the rate of such a code is inferior to other codes in the
literature, and therefore we have omitted the details.

IV. CLOSING WORDS

We conclude that the fingerprinting code of [7] is broken if
the colluders refuse to accept the assumption of equal contri-
butions, and an optimal attack gives an error rate of at least
25%. This proves that the assumption of equal contributions is
not valid in general, and it is worrying that this assumption so
often is accepted in the literature (e.g. [4]) without argument.

It is an open question to check the assumption for other
proposed solutions where it has been applied. In many cases
it can almost certainly be proved that there exists an optimal
attack where equal contributions are used, but then this would
be a property of the particular fingerprinting scheme and not
of the fingerprinting model.
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