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Abstract Digital fingerprinting has been suggested for
copyright protection. Using a watermarking scheme, a
fingerprint identifying the buyer is embedded in every
copy sold. If an illegal copy appears, it can be traced
back to the guilty user. By using collusion-secure codes,
the fingerprinting system is made secure against cut-and-
paste attacks.

In this paper we study the interface between the
collusion-secure fingerprinting codes and the underlying
watermarking scheme, and we construct several codes
which are both error-correcting and collusion-secure. Error-
correction makes the system robust against successful
attacks on the watermarking layer.

Keywords collusion-secure fingerprinting, copyright
protection, error-correcting codes, watermarking,
soft-decision decoding

1 Introduction

Unauthorised copying and distribution of copyrighted
material has received increasing attention over many years,
both in research communities and in the daily press.
Authors and artists depend on their income from le-
gal sales, and unauthorised copying is often seen as a
threat to these sales. For instance, the American Interna-
tional Intellectual Property Alliance [1] claim that losses
from piracy of U.S. copyrighted material amounts to 25-
30 billion US$ annually, excluding internet piracy. Even
though such estimates are often disputed, there is no
doubt that big money is at stake, and the issue receives
tremendous interest. Several countries are in the process
of changing their legislation to deal more effectively with
illegal distribution in new media.
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There are several technological approaches to bat-
tling copyright piracy. Digital Rights Management (DRM)
encompass different techniques to prevent copying or re-
strict use of a digital file. Such technology is controversial
because it also restricts normal use which is traditionally
legal. So-called forensic techniques do not prevent copy-
ing; instead, when unauthorised copies appear, they en-
able the copyright holder to trace the pirates and prose-
cute. Since forensic techniques only come into play when
a crime is evident, it is less controversial than DRM.
Still, no perfect or generally accepted solution exists yet,
giving ample room for new research.

Digital fingerprinting (FP) was suggested as a foren-
sic technique in [25], and following [3,4] this problem has
received increasing interest. Each user is identified by a
‘fingerprint’ which is embedded in the file in such a way
that the user cannot remove it. If an unauthorised copy
appear, the embedded fingerprint reveals the identity of
the guilty party. Of course the pirate(s) will do what they
can to remove or damage the fingerprint, and making the
FP system robust to any conceivable attack is a challeng-
ing task. One typical attack would be the cut-and-paste
attack, where a collusion of pirates cut segments from
their individual copies and paste them together to form
a hybrid copy with a hybrid fingerprint.

An FP system is often divided into two modules. A
watermarking (WM) scheme (see e.g. [7]) is used to em-
bed the fingerprint in the digital file. The fingerprint is a
sequence (c1, . . . , cn) where each symbol ci is embedded
independently into one segment of the file in the WM
layer. The set of all fingerprints is called a code. In order
to make the system resistant against collusive attacks
(e.g. cut-and-paste attacks), a collusion-secure code can
be used. Most of the literature studies the WM scheme
and the collusion-secure code separately as black boxes,
and we follow and refine this view.

The FP literature has defined its requirements for the
WM scheme as a Marking Assumption. Different vari-
ants of this assumption exist. The most common one
[4] says that when a collusion make a hybrid copy, each
fingerprint symbol in the hybrid copy will match the fin-
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gerprint of at least one of the members. Unfortunately,
this assumptions is unrealistically strong. Regular WM
attacks can cause decoding errors in the WM layer for
some of the symbols.

In this paper, following Guth and Pfitzmann [9], we
use a weaker Marking Assumption, which allows for some
successful attacks in the WM layer as well as the cut-
and-paste attack. The solution is codes that are both
collusion-secure and error-correcting.

One of the most celebrated collusion-secure codes is
due to Boneh and Shaw [4]. Codes for the Guth-Pfitzmann
Marking Assumption were developed in in [9,15,27], and
all of these were based on the Boneh-Shaw code. Re-
cently, we have seen [20] that the Boneh-Shaw code is
theoretically more secure than originally assumed for the
Boneh-Shaw Marking Assumption. In [22] we saw that
the code can be further improved by using soft decision
decoding.

Collusion-secure fingerprinting has been studied both
from experimental and theoretical angles. A survey of the
field can be found in [26]. A recent paper [11] made an ex-
perimental analysis of a joint WM/FP system. Although
it did not directly use the theoretical properties of the
collusion-secure code used, it was ground-breaking as the
first attempt to combine collusion-secure codes with real
WM schemes.

In this paper, we analyse the Boneh-Shaw scheme
with soft decision decoding (BS-SD) in view of the Guth-
Pfitzmann Marking Assumption. Our goals are (1) to
show that BS-SD is theoretically secure under the Guth-
Pfitzmann Marking Assumption, and that it is theoreti-
cally more efficient than previously known solutions; and
(2) to demonstrate that it works in conjunction with a
real WM scheme, with efficiency comparable to other
known joint WM/FP schemes. Thirdly, we propose a
variant of BS-SD using algebraic outer codes. This has
theoretical advantages for large parameters, but could
not be realised for the parameters used in our experi-
ments (up to 10 000 users) for comparison with previous
works.

We will start by defining the watermark/fingerprinting
model in Section 2. The model is a refined variant of [9].
We emphasise the advantages of a modular model and
the use of black boxes. We also discuss how various at-
tack relates to the model. The main result, namely the
analysis of BS-SD [21], is presented in Sections 3 (the-
oretical analysis) and 4 (experimental analysis). In the
final section we present conclusions and open problems.

2 The layered fingerprint/watermark model

In this section, we develop the layered model which will
allow us to analyse each component of the system the-
oretically. We will first define basic notation and termi-
nolgy from coding theory, which we will use through-
out. We present a two-layer model for fingerprinting in

Section 2.2, before we discuss respectively fingerprinting
and watermarking attacks on the system in Sections 2.3
and 2.4. In Section 2.5, we will discuss a three-layer
model. At the end of the section we stress the advan-
tages of a layered model.

2.1 Coding theory

An (n,M) code C is a set ofM distinct codewords (c1, . . . , cn)
of length n. Each element ci is drawn from some alpha-
bet Q, i.e. a discrete set. If Q has q elements, we also say
that C is an (n,M)q code.

The minimum (Hamming) distance between two dis-
tinct codewords is denoted by d = δn. An (n,M, d) code
is an (n,M) code with minimum distance d. The (infor-
mation) rate of a code is defined as R = (logqM)/n.

If Q is a finite field Fq for q elements, and if C is a
vector space over Fq, then C is a linear code. An [n, k, d]q
code is a linear code of dimension k (size M = qk).

In general the decoding problem is NP-complete, but
many linear codes with known algebraic structure have
faster decoding algorithms. We will use two such codes
in this paper. The Reed-Solomon (RS) codes allow con-
structions of [n, k, n + 1 − k]q codes for any n ≤ q and
any k, 1 ≤ k ≤ n (see e.g. [14]). Algebraic Geometry
(AG) codes allow asymptotic constructions according to
the proposition from [24] below. CRT codes were used in
[27,16], but the parameters appear to be the same as for
Reed-Solomon codes so we do not study them separately.

Proposition 1 For any α > 0 there are constructible,
infinite families of codes with parameters [N,NR,Nδ]q
for N ≥ N0(α) and

R+ δ ≥ 1− (
√
q − 1)−1 − α,

where q is an even prime power.

A concatenated code is defined as follows. Take an
inner binary (n1, q)q′ code CI and an outer (n2,M)q code
CO over Q. Each symbol of Q is mapped on a codeword
from CI, and the codewords of the concatenated code
C is formed by taking each word of CO and replace the
symbols by words from CI. Thus we get an (n1n2,M)q′
code C.

2.2 The two-layer model

Guth and Pfitzmann [9] pointed out how the standard
FP models fitted into a layered structure, with a WM
layer and a FP layer. (Cf. Figure 1.)

The file is divided into n segments which are fed di-
rectly and independently to the watermarking layer. The
embedding algorithm embeds a message from the set Q
in the segment, in such a way that an adversary cannot
change or remove it. The watermarked segment is called
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Fig. 1: Watermarking/Fingerprinting model.

a mark. The extraction algorithm takes a mark and re-
turns a message from Q.

In the fingerprinting layer, each user is identified by
a codeword from some (n,M) code C over Q. The code
C has M codewords (fingerprints), so M users can be
catered for. When a copy is sold, the buyer is assigned a
fingerprint c ∈ C. Each element of c is fed to the WM
layer to be embedded in the digital file. Observe that
the copyrighted file is not used in the FP layer at all. All
interaction with the media file occurs in the WM layer;
the FP layer is completely media-independent.

When an illegal copy is found, the file is split into
n segments which are fed to the extraction algorithm in
the WM layer. The n outputs give a false fingerprint
x = (x1, . . . , xn) ∈ Qn which is fed to the FP layer. The
fingerprint decoder takes x and outputs L ⊆ C identify-
ing a number of users expected to be guilty.

If no change has been made to the fingerprinted file,
the copy can be traced back to a user. In fact x ∈ C
and it corresponds to the buyer of this copy. A pirate
however, does not want to be identified, so he will make
attack, either on the WM or the FP scheme, in order
to cause the decoding to fail. We will discuss possible
attacks shortly.

Let P ⊆ C be the set of pirate fingerprints, and L ⊆
C the output for the fingerprint decoder. If L = ∅, we
say that we have an error of Type I or a failure. If L 6⊆ P ,
there is an innocent user accused by the decoder, and we
call this a false accusation or an error of Type II. If we
have no error of either type, then L is a non-empty subset
of the pirates, and the decoder has been successful.

The mapping from coordinate positions of C onto
segments is assumed to be uniformly random and secret.
In other words, the pirates have no information about
which coordinate position i = {1, . . . , n} of C is embed-
ded in a given segment.

We have assumed that the WM extractor always re-
turns a single element of Q. This is a simplification. Some

systems will also be able to return ‘erasure’ when no one
element appears as more likely than others. In order to
keep the model simple, we replace any erasure by a ran-
dom symbol and treat it as an error.

2.3 Attacks in the fingerprinting layer

Pirates can mount attacks against either or both layers.
The goal is always to get an illegal copy which cannot
be traced back to them, i.e. where the output L from
the fingerprinting decoder does not contain any of the
pirates.

A collusion of t pirates have access to t distinct copies
with different fingerprints. Comparing the copies, they
will see some segments which are different (called de-
tectable marks) and some which are identical (called un-
detectable marks).

One known attack is available in the FP layer, namely
the cut-and-paste attack, where the pirates take some
segments from each of their copies and paste them to-
gether. The result is a hybrid fingerprint where each sym-
bol matches at least one of the pirate copies. Many tra-
ditional works assume that only cut-and-paste attacks
are possible. The classic phrasing of this assumption is
as follows [4].

Definition 1 (The Marking Assumption) Let P ⊆
C be the set of fingerprints held by a coalition of pirates.
The pirates can produce a copy with a false fingerprint
x for any x ∈ F (P ), where

F (P ) = {(c1, . . . , cn) : ∀i,∃(x1, . . . , xn) ∈ P, xi = ci}.

We call F (P ) the feasible set of P with respect to C.

A code C is said to be (t, ε)-secure under the Marking
Assumption, if, when there are at most t pirates, the
output L of the fingerprinting decoder is a non-empty
subset of the pirates with probability at least 1− ε.
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The most well-known solution under the Marking As-
sumption, is due to Boneh and Shaw [3,4]. A handful of
other schemes have also appeared over the years; see [19]
for an overview. Collusion-secure codes are also employed
in traitor tracing [5,6]. Whereas fingerprinting protects
the digital data in themselves, traitor tracing protects
broadcast encryption keys.

2.4 Attacks in the watermarking layer

A real WM scheme cannot be expected to be infallible.
We say that the extraction algorithm fail in position i if
the output xi does not match the i-th symbol of any of
the pirate fingerprints. Such failure can be either acci-
dental or due to pirate attacks, and the following causes
are known.

1. Random unintentional noise. If the file is transmit-
ted over an analog medium (like radio), it will be dis-
torted by random noise. When the file is distorted,
the watermark may be distorted as well.

2. Non-collusive watermarking attack.Non-collusive WM
attacks can be applied to any mark. By garbling the
segment, the pirates cause the extraction algorithm
to fail with some probability. Lossy compression can
also work as a non-collusive attack.

3. Collusive watermarking attack. A collusive WM at-
tack applies to detectable marks. This is similar to
collusive attacks in the FP layer, but operates on a
single segment, and may result in a hybrid segment
different from all of the pirates’ copies. The most
common example is the averaging attack, where the
pirates use an average of all their copies.

4. Cropping a segment. A pirate can crop the file by
removing certain segments.

If the pirates use a very strong WM attack or exten-
sive cropping, they will also ruin the file so that it no
longer be useful. This limits the success probability of
the attacks. Let εin be an upper bound on the proba-
bility that the extraction algorithm fail. This leads to a
weaker Marking Assumption [9] as follows.

Definition 2 (Marking Assumption with Random
Errors) Let P ⊆ C be the set of fingerprints held by a
coalition of pirates, and let xi be the output xi from the
watermarking layer in position i. The probability that for
all (c1 . . . cn) ∈ P , ci 6= xi, is at most εin, independently
of the output xj for all other columns j 6= i.

Note that when εin = 0, this coïncides with the Boneh-
Shaw Marking Assumption. An error-correcting adap-
tion of the Boneh-Shaw scheme was proposed in [9].
A non-binary solution was presented in [17], protecting
against deletion as well as errors, but this solution used
generalised Reed-Solomon codes requiring a very large
alphabet.

The assumption of independent segments is crucial
in order to use simple statistical models and formulæ. In
real applications it may not be true. Statistical depen-
dence is most likely to exist within local neighbourhoods.
Now it is important to remember that the pirates do not
know to which code column a given segment corresponds.
Thus, they will have no means to predict the correlation
between two code columns, and it seems reasonable to
assume independence as a fair approximation, though we
have to assert it for potential WM schemes.

We assume that the receiver is able to synchronise,
even in presence of cropping, before passing segments
to the WM extractor. This can always be done if the re-
ceiver has access to the original file. The missing symbols
are erasures, replaced by random symbols and treated
like errors. Some authors argue that synchronisation is
not always trivial and devise collusion-secure codes with
deletion-correction in order to synchronise in the FP
layer.

It is an open question if this Marking Assumption be
true for various known watermarking schemes. The as-
sumption is reasonable, as for the most widely accepted
schemes, there is no known attack which allows the at-
tacker to succeed with certainty. For each level of distor-
tion, the success rate of the attack can be limited by εin.
It is irrelevant to our construction which attack is used,
as long as the success rate is bounded by εin.

When the FP code is binary, collusive attacks in the
WM layer have no effect. A collusive attack depends on
the colluders seeing different watermarks. In the binary
case, this means that they see all possible watermarks,
and any decoding would be correct.

2.5 The three-layer model

It can be argued that schemes based on [4] actually use a
three-layer model. The FP code of [4] is a concatenated
code. It can be instructive to place the inner and outer
codes in different layers, as in Figure 2.

1. Watermarking layer. The WM embedder takes an el-
ement xi ∈ Q′ and a segment ui of the file, and out-
puts a watermarked segment wi. The WM extractor
inverts this; given wi it outputs xi.

2. Inner fingerprinting layer. The inner fingerprinting
code CI is an (n1, q) code over Q′. The encoder takes
a symbol x ∈ Q and encodes it as a word c1 ∈ CI.
Each position of c1 is passed to the watermarking
layer for embedding. The symbols corresponding to
one symbol from Q is called a block.

3. Error-correcting (EC) layer. The outer code is an
(nO,M) code CO over Q. This code has to be error-
correcting, and will correct errors whether they are
caused in the watermarking layer or in the inner fin-
gerprinting layer. The encoder takes a buyer and en-
codes it as a codeword c2. Each symbol of c2 is then
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Fig. 2: The three-layer model.

passed to the inner fingerprinting layer for encoding
and embedding.

The rationale for the middle layer is to expand the
alphabet. Efficient known solutions for the top layer re-
quire huge alphabets. The inner FP code need not be
very strong if the outer code can correct many errors
[18]. Decoding in the inner layer can also be allowed to
be relatively costly, because the code is relatively small.
It is much more important to have an efficient decoder
in the ECC layer.

With Kerchoffs’ principle [12] in mind, we assume
that most of the system is public knowledge. Only pa-
rameters which can be randomly chosen at initialisation
of each new application can be kept secret; these param-
eters are known as the key. Therefore, we assume that
the pirates know how to divide the file into segments.
On the other hand, they do not know which segment
correspond to which column of C, as this mapping is a
random secret permutation.

2.6 The advantages of layered models

Each layer in the model uses different types of infor-
mation processing. The WM layer, interacting with the
media file, is mainly signal processing. The FP and ECC
layers use coding theory and small, discrete alphabets.
The FP code may have to be designed specifically for fin-
gerprinting, but the ECC code is commonly a standard-
issue code known from other applications.

The layered model allows us to farm out the differ-
ent components to experts of various fields, and reuse
components from other areas of research. However, this

is only possible if the interfaces between layers are well-
defined and agreed.

Our focus in this paper will be on the FP and ECC
layers, and we will only make minor suggestions for the
WM layer. Hopefully, this will inspire further research
on the topic by watermarking experts.

3 The Boneh-Shaw code

The BScode [4] is probably the FP code most frequently
referred to in the literature. In [18], we proved that by
viewing the outer code as an error-correcting code, we
can improve the error bound significantly, without chang-
ing the FP scheme. A second step was made in [21],
where a new modified scheme was developed, using soft
decision decoding for the BS inner code.

In this paper, we investigate how the BS scheme with
Soft Decision decoding (BS-SD) performs in the presence
of random errors. New error bounds are proved in The-
orems 2, 3, and 5, taking random errors into account.
We also prove theorems about the asymptotic perfor-
mance of the construction. We note in particular that
the achievable rate degrades only slowly in the error rate
from the WM layer. All the theorems are generalisations
of previous results for the Boneh-Shaw Marking Assump-
tion [21].

3.1 On the BS inner code

Boneh and Shaw used an (r(q−1), q) inner code. We saw
in [21], that the optimal choice is r = 1, giving a (q−1, q)
code where the codewords form an upper triangular 0-1



6

matrix, with ones on and above the diagonal, i.e.

c1

c2

c3

...
cq−1

cq

 =



1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...
...
...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0

 .

Note thatQ is represented as natural numbers {1, 2, . . . , q},
and i ∈ Q is encoded as the i-th row ci of the inner code.

Let (X1, . . . , Xq−1) be a hybrid fingerprint. Let X0 =
0 and Xq = 1 by convention. Note that unless user i
is a pirate, the pirates cannot distinguish between the
(i− 1)-th and the i-th column. Hence the probability of
outputting a 1 is equal for the two columns, i.e. Xi ∼
Xi−1.

The output from the inner decoding algorithm is the
vector

(Vj : j ∈ CI) where Vj = Xj −Xj−1. (1)

Observe that all the Vj sum to 1 and Vj ∈ [−1, 1] for all
j. Furthermore, if the pirates cannot see symbol j and
j 6∈ {1, q}, then E(Vj) = 0.

3.2 On the outer code

Boneh and Shaw suggested to concatenate the BS inner
code with a random code, decoded using closest neigh-
bour decoding. Each symbol in each codeword is drawn
independently and uniformly at random. The random
code has to be kept secret by the vendor. Muratani [15,
16] and others have combined the BS inner code and
algebraic outer codes with large minimum distance in
a different model with a stronger marking assumption.
Outer codes with large distance was also studied in the
Boneh-Shaw model in [18], and even though the code
rates are inferior to random codes, they are reasonably
good, and algebraic codes have the advantage of more
efficient decoding.

The closest neighbour decoding used in [4] returns
the codeword c ∈ CO minimising the Hamming distance
d(x, c), where x is the hybrid fingerprint (after each block
has been decoding using the inner code). In [18] we ar-
gued the utility of list decoding of the outer code, i.e.
we return all codewords c within a certain distance of
d(c,x) ≤ ∆nO.

Soft decision decoding of the Boneh-Shaw scheme was
introduced in [21]. After inner decoding of each block, we
form the q×n reliability matrix R = [ri,j ] where the i-th
row is the vector (V1, . . . , Vq) from inner decoding of the
i-th block. The output of the soft decision list decoder is
a list L ⊆ C of codewords

L = {c : W (c) ≥ ∆n}, (2)

W ((c1, . . . , cn)) =
n∑
i=1

ri,ci
. (3)

For random codes, the list decoding has to be imple-
mented as an exhaustive search with complexity O(M).
Using Reed-Solomon or AG outer codes, we can use the
Kötter-Vardy algorithm [13], which is a soft-decision vari-
ant of the Guruswami-Sudan algorithm [8] and has com-
plexity O(logM).

We employ the common assumption that the pirates
make independent decisions in each column (segment),
such that all the Xi are independent and distributed as
B(1, pi) for some probability pi. This assumption is rea-
sonable by the laws of large numbers, if there is at least
a moderately large number of columns indistinguishable
for the pirates. Most importantly, this assumption im-
plies that the ri,ci for different i are stochastically in-
dependent, allowing us to use the well-known Chernoff
bound, defined as follows.

Theorem 1 (Chernoff) Let X1, . . . , Xt be bounded, in-
dependent, and identically distributed stochastic variables
in the range [0, 1]. Let x be their (common) expected
value. Then for any δ ∈ [0, 1], we have

P

(
t∑
i=1

Xi ≤ tδ

)
≤ 2−tD(δ||x), when δ < x,

P

(
t∑
i=1

Xi ≥ tδ

)
≤ 2−tD(δ||x), when δ > x,

where

D(σ||p) = σ log
σ

p
+ (1− σ) log

1− σ
1− p

.

A nice presentation of this result and its proof can
be found in [10].

The probability of failure is independent of the choice
of outer code, and we present the result below. The prob-
ability of false accusations on the other hand, must be
derived separately for different classes of outer codes, and
this is done in subsequent subsections.

Theorem 2 (Probability of failure) Suppose there
are at most t pirates, and that they have probability at
most εin < 1/2 of causing an error in an undetectable
position. Using the concatenated code with a BS inner
code and soft input list decoding with threshold ∆ < (1−
2εin)/t, for the outer code, the probability of failing to
accuse any guilty user is given as

εI ≤ exp−nOD

(
1 +∆

2

∣∣∣∣ t+ 1
2t
− εin

t

)
.

This bound is independent of the choice of outer code.

For εin = 0, the above theorem reduces to the original
result of [21].
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Proof The probability εI that the decoding algorithm
outputs no guilty user, is bounded as

εI ≤ P

(
1
t

nO∑
i=1

∑
c∈P

ri,ci
≤ ∆nO

)
= P

(
nO∑
i=1

Yi ≤ ∆nO

)
.

where

Yi =
∑
c∈P

ri,ci

t
=

1
t

∑
c∈P

Vci .

Obviously
∑
γ∈Q Vγ = 1.

Let Pi ⊆ Q be the set of symbols seen by the pirates
in position i, i.e. Pi = {ci : ∃(c1, . . . , cnO) ∈ P}. Write
a = (minPi)−1, and b = maxPi. Then we have E(Xa) ≤
εin and E(Xb) ≥ (1−εin). (We have E(Xa) = εin if a = 1
and E(Xa) = 0 if a > 1, and E(Xb) = 1 − εin for b = q
and E(Xb) = 1 for b < q.) Hence

E(
b∑
i=a

ri,ci
) ≥ 1− 2εin,

and since E(ri,γ) = 0 when γ 6∈ Pi ∪ {1, t}, we get

E(Yi) = E

(
1
t

∑
c∈P

ri,ci

)
≥ 1− 2εin

t
,

Note that Yi ∈ [−1, 1], so in order to get a stochastic
variable in the [0, 1] range, we set Zi = (1 + Yi)/2. Thus

εI ≤ P
( n∑
i=1

Zi ≤
1 +∆

2
nO

)
.

If ∆ < (1 − 2εin)/t, the Chernoff bound is applicable,
proving the theorem. ut

3.3 Random outer codes

In this section, we consider random outer codes, where
each symbol of every codeword is drawn uniformly at
random. The analysis follows [21,18].

Theorem 3 (Error rate for random codes) Con-
catenating a (q−1, q) BS inner code with a random outer
code using soft input list decoding with threshold ∆ > 1/q
for the outer code, the probability of accusing an innocent
user is given as

εII ≤ 2(RO log q−E)nO , where E = D

(
1 +∆

2

∣∣∣∣q + 1
2q

)
.

Proof Let c 6∈ P be an innocent user. The probability of
accusing c is

π(c) = P

(
nO∑
i=1

Yi ≥ ∆nO

)
,

where Yi = ri,ci where ci is drawn uniformly at random
from Q. Recall that the ri,ci

for ci = 1, . . . , q sum to 1.
Hence E(ri,ci) = 1/q. Like in the last section, we make
a stochastic variable in the [0, 1] range, Zi = (1 + Yi)/2,
to get

E(Zi) =
q + 1
2q

and π(c) = P

(
nO∑
i=1

Zi ≥
1 +∆

2
nO

)
.

The theorem follows by applying the Chernoff bound and
multiplying by the number of innocent users≈ 2nORO log q.

ut

Example 1 Suppose we require a Boneh-Shaw scheme
with t = 20, M = 220, εin = 2%, εII = 10−3, and
εI = 10−6. We use q = 3t. Setting equality in Theorems 2
and 5, we get

3 log 10 = D

(
1 +∆

2
||21

40
− εin

20

)
nO,

6 log 10 = D

(
1 +∆

2
|| 61

120

)
nO − 20.

We solve the equations to get ∆ ≈ 0.03757 and nO ≈
126 660, and consequently n = 7472 940.

Remark 1 Similar calculations to the example for fewer
pirates give length 5 655 for t = 2, 21 744 for t = 3,
109 074 for t = 5, and 915 385 for t = 10, still assuming
a million users and 2% WM errors.

Theorem 4 There is an asymptotic class of (t, ε)-secure
codes with ε→∞ and rate given by

Rt ≈
D
(
t+1−2εin

2t || q+1
2q

)
q − 1

, for any q >
t

1− 2εin
.

Proof For asymptotic codes, εI → 0 if ∆ < (1− 2εin)/t,
so we can take ∆ ≈ (1 − 2εin)/t. Likewise, εII → 0 if
∆ > 1/q and

RO <
D
(
t+1−2εin

2t || q+1
2q

)
log q

.

Since RI = log q/(q − 1), we get the theorem. ut

The theorem obviously demands q = Ω(t), but we
cannot see any nice expression for the optimal value of
q. Asymptotic error rates are shown in Figure 3 for var-
ious alphabet sizes. Large alphabets appear to be better
asymptotically.
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Fig. 3: Code rates for concatenated codes with BS inner
codes and random codes for varying underlying error rates
and varying q for t = 2, 3, 5, 10.

3.4 Outer codes with large distance

Theorem 5 Suppose there are at most t pirates, and
that they have probability at most εin < 1/2 of causing an
error in an undetectable mark. Concatenating a (q−1, q)
BS inner code with an (nO, 2ROnO , δnO) outer code using
soft input list decoding with threshold ∆ for the outer
code, the probability of accusing an innocent user is given
as

εII ≤ exp (RO log q − E)nO,

where

E = [1− t(1− δ)]D
(

1
2

+
α

2
||1

2
+
εin
q

)
,

α =
∆− t(1− δ)
1− t(1− δ)

, (4)

provided that α > 2εin/q.

Proof Let c 6∈ P be some innocent user. We want to
bound the probability of accusing c,

π(c) ≤ P

(
nO∑
i=1

ri,ci
≥ ∆nO

)
.

An innocent user c can match a given pirate in at most
(1−δ)nO positions. Thus there are at most t(1−δ)nO po-
sitions where c matches some pirate. For the purpose of a
worst case analysis, we assume that ri,ci

= 1 whenever ci
matches a pirate. There are at least N = [1− t(1−δ)]nO

positions i1, . . . , iN , where ri,ci
= Vci

and the pirates do
not see ci. Thus we get

π(c) ≤ P

(
N∑
i=1

ri,ci ≥ αN

)
,

where α is given by (4) and

N = [1− t(1− δ)]nO.

Clearly, α increases in δ as well as in ∆.
Suppose ci is not seen by any pirate. Recall that if

ci 6∈ {1, q}, thenXci
∼ Xci−1 and consequently E(ri,γ) =

0, independently of εin. For ci ∈ {1, q} however, we have
E(ri,ci

) = εin. Since the encodings φi are uniform and
random, we have P (ci ∈ {1, q}) = 2/q, and hence E(ri,ci

) =
2εin/q. Setting Yi = (1 + ri,ci)/2, we get E(Yi) ≤ 1/2 +
εin/q and

π(c) ≤ P

 N∑
j=1

Yj ≥
1 + τ

2
N

 .

The theorem follows by applying the Chernoff bound and
multiplying by the number of innocent users≈ 2nORO log q.

ut
Remark 2 It is possible to construct a variant where the
bound on εII is independent of εin. This is achieved by
adding an all-one and an all-zero column to the inner
code, making CI a (q + 1, q) code. The result would be
that E(Vi) = 0 when i = 1, q and i is innocent, and
thus the εin/q term in the second argument of D(·||·)
disappears. When q is relatively large however, the effect
of this is marginal.

Example 2 We use the same target values as in Exam-
ple 1, and a [220, 1]220 RS (or repetition) code. The Type
I error rate is bounded as

εI ≤ exp−1024D
(

1 +∆

2

∣∣∣∣21
40
− εin

20

)
.

Setting the bound equal to 10−3 and solving, we get
∆ ≈ 0.04437. Inserting this into the bound on Type II
errors, we get εII ≤ 0.34 · 10−442. Using the shortened
(or generalised) [215, 1]220 RS code as outer code, we get
εII ≈ 0.10 · 10−7. This gives a code of length n ≈ 235.

In order to make asymptotic construction, we take
∆ ≈ (1− 2p1)/t just at we did for random codes. To get
εII → 0 we require that α > εin/q in Theorem 5, and
that

RO <
1− t(1− δ)

log q
D

(
1
2

+
α

2

∣∣∣∣1
2

+
εin
q

)
.

We use codes with RO ≈ 1 − δ − 1/(
√
q − 1). It follows

that we can have outer code rate arbitrarily close to the
RO solving the following equation,

RO =
1− t

(
RO + 1√

q−1

)
log q

D

(
1
2

+
α

2

∣∣∣∣1
2

+
εin
q

)
, (5)

α =
1− 2εin − t2

(
RO + 1√

q−1

)
t− t2

(
RO + 1√

q−1

) ,

εin
q
<
α

2
.
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Fig. 4: Code rates for concatenated codes with BS inner codes
and AG outer codes for t = 2, 3, 5, 10 and q = 25t4.

Fig. 5: Asymptotic code rates against t = 5 pirates for differ-
ent alphabet sizes.

The total rate is Rt(q) = RI ·RO where

RI =
log q
q − 1

.

The number of pirates t, is a property of the resulting
codes, whereas q is a control parameter chosen so as to
maximise Rt. We have calculated some sample rates by
solving (5) by fix-point iteration. A graphical view on the
asymptotic result is shown in Figures 4 and 5. The former
shows performance for different numbers of pirates t, and
the latter for 5 pirates with different alphabet sizes.

3.5 Comparison

The most notable codes for the Guth-Pfitzmann Marking
Assumption are due to Guth-Pfitzmann (GP) [9], Mu-
ratani [15], and Yoshioka and Matsumoto [27]. Among

these, only [9] offer theoretical error bounds. The other
two give only experimental analyses.

Since our code takes advantage of soft decision de-
coding, it can, even at high error rates, use shorter code-
words than Boneh and Shaw [4]. The GP code requires
longer codewords than Boneh and Shaw did, and is thus
clearly outperformed by our code.

As an example, we calculated the length for the GP
code using the same parameters as in Example 1, and
found n ≈ 5.9 · 109; more than a thousand times more
than our code. Asymptotically, the GP code compares
even less favourably, as it has n = O((logM)2). In ad-
dition to the outer code being linear in logM , the inner
code of uses a replication factor r = O(logM).

Observe that the error bounds theoretically proved
in this paper hold for any attack under the Marking
Assumption with random errors. An experimental anal-
ysis can only lead to conclusions about the particular
attacks tried in the experiment. A clever attacker may
very well come up with a more efficient attack than the
analyst could. Thus, theoretical analyses tend to give up-
per bounds on error probabilities, whereas experimental
analyses give lower bounds. For critical security appli-
cations, upper bounds will usually be required by the
specification. The same will be the case for forensic sys-
tems used as evidence in a criminal court. A lower bound
will not limit the level of doubt, and thus will not allow
conviction.

4 Experimental results

We have made a series of experiments to describe possi-
ble operation of the Error-Correcting Boneh-Shaw scheme.

We start by presenting simulations of the Boneh-
Shaw scheme as an isolated black box for the FP and
ECC layers. For comparison with [27], we use M =
10 000 users in Section 4.1, and to compare with [11], we
use M = 1024 in Section 4.2. In order better to match
the scenario studied in [11], in Section 4.3 we introduce
a variant of our scheme taking soft input to the decoder.

In Section 4.4, we demonstrate how the Boneh-Shaw
scheme could be used in conjunction with a simple image
WM scheme, and demonstrate its performance opposite
the standard attacks used in similar analyses in the lit-
erature, such as averaging, cut-and-paste, and Gaussian
noise.

Experimental tests show that the alphabet size should
be kept relatively small to minimise the rate of decod-
ing error for given M , n, and t. This is contrary to the
asymptotic case, where q should be large, especially for
high error rates. Unfortunately, the algebraic outer codes
require very large alphabets. We did some tests with
M = 10 000 and q = 101, but we had almost 100%
decoding error, and we were nowhere close to the per-
formance of random codes in Section 4.1.
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1. Generate a random [n,M ] Boneh-Shaw code C
2. Draw a set P ⊂ C of t random fingerprints
3. Make a hybrid fingerprint y′ from P , by dividing the code

positions into t disjoint groups, and set all bits in group
i equal to the fingerprint of the ith pirate.

4. Flip a fraction εin of the bits in y′ uniformly at random
to obtain y.

5. Use y to trace one user c, and note success if c ∈ P and
error otherwise.

Table 1: Simulation procedure for the fingerprinting layer.

Fig. 6: Comparison of different thresholds at εin = 37%.

Still, algebraic outer codes may be an alternative for
applications with more users. The key advantage is effi-
cient decoding. For the small examples commonly consid-
ered in the literature , decoding efficiency is not likely to
be an issue. With 10 000 users the calculation of a single
sample (incl. code generation, encoding, and decoding)
typically took 42s, using a crude Matlab implementation.

4.1 Simulations with 10 000 users

Yoshioka and Matsumoto [27] proposed a code which
they analysed by simulations with M = 10000 users,
t = 15 colluders, and a length of n = 293 000. We present
a similar simulation of our coding using similar parame-
ters.

Experimentally, using q = 15 and nO = 20 000 give
decent performance for the Boneh-Shaw scheme with
random outer code. The total length is then n = 280 000,
which is slightly shorter than [27]. We use the average of
50 samples to calculate each data point throughout this
subsection.

Yoshioka and Matsumoto used list decoding. They
claim zero false positives throughout the experiments,
using a sample size of 100 coalitions. The number of true
positives was shown as a declining function in εin. They

Fig. 7: Simulation results for closest neighbour decoding with
M = 10 000 users.

Fig. 8: Simulation results for list decoding with M = 10 000
users.

pointed to an error rate εin = 37% as the limit where the
average number of true positives was 1.

Figure 6 shows a comparison of different threshold
values ∆ for our scheme, at an error rate of 37%. Using
this plot we find that thresholds around 0.09 give εII ≈ 0.

Figures 7 and 8 show the performance of our scheme
with closest neighbour and list decoding respectively.
We observe the same breakpoint of εin ≈ 37% as [27],
where the average number of correctly identified users
is 1. However, contrary to [27], we detect all the collud-
ers up to εin > 20%, whereas [27] reports detection of
only 9 colluders on average for εin = 0 and 7 users for
εin = 20%. On the other hand, for εin > 40%, we de-
tect almost no colluders whereas [27] does some of the
time. We also observe that closest neighbour decoding
has negligible error rate up to εin = 37%.
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Fig. 9: Simulation results for M = 1024 users.

Fig. 10: Simulation results for M = 1024 users.

4.2 Simulations with 1024 users

In [11], the analysis was based on simulations usingM =
1024 users and a codelength of n = 30 000. Their wa-
termarks are sequences of ±1. In the experiments, they
added the watermark to random Gaussian signals (simu-
lating the host signal). The detector was non-blind, sub-
tracting the the host signal before decoding using a corre-
lation decoder. They made experiments with watermark-
to-noise rations (WNR) ranging from -20dB to 0dB, but
they did not specify the distribution of the noise.

Matching the parameters of [11], we use q = 11 and
nO = 3000. Figures 9 and 10 show experimental perfor-
mance for different collusion sizes and error rates.

In a practical scenario, we suppose that the binary
codeword over {0, 1} will be translated to a watermark w
with symbols from {±1} by mapping 0 7→ −1, which can
be added to the host signal, possibly after multiplication
by a watermarking strength α. We assume a non-blind

WNR σ εin
0dB 1 15.9%
-4dB 0.6310 27.1%
-8db 0.3981 34.5%
-12dB 0.2512 40.1%
-16dB 0.1585 44.0%
-20dB 0.1000 49.6%

Table 2: Error rate εin resulting from White Gaussian noise
with standard deviation σ, and corresponding to given WNR.

hard-decision decoder, which decodes negative values to
0 and positive values to 1.

Under White Gaussian noise, using hard decision de-
coding as suggested, the error rate εin generated at vari-
ous WNR is given by Table 2. The table has been derived
theoretically from the normal distribution. The curves in
Figure 10 correspond to WNR from 0dB to -20dB in in-
tervals of 4dB.

Experimental error rates are depicted in Figures 9
and 10. At εin = 15.9% (WNR 0dB) the performance
is decent, but it is clear, as one would expect, that at
higher noise level this scheme is not good enough. A
hard-decision demodulator with εin ≈ 49.6% would re-
quire an extremely long code; however, a soft-input de-
coder at a WNR of -20dB is feasible. Indeed, soft input
is used in [11].

4.3 Soft input decoder

In order to match [11], we make an ad hoc modification
to our system, to allow soft input to the decoder. This is
relatively simple to do.

We use the same embedding as before, mapping 0 7→
−1. The non-blind receiver will subtract the host signal,
to get an observed, received sequence r′. The input to
the fingerprint decoder is r = (r′+1)/2 The only change
introduced is that the decoder input, which used to be
elements of {0, 1}, are now real numbers. Consider the
heuristic Vj = Xj −Xj−1 from equation (1) used by the
inner decoder. This is still well-defined and real for any
real Xj .

We made a new simulation using this approach. The
flip attack in Table 1, Step 4 was replaced by addition
of Gaussian noise with µ = 0 and varying σ. Results
are shown in Figures 11, and 13a. We also tried with an
averaging attack instead of cut-and-paste in Figures 12
and 13b.

Comparing the figures against the figures of [11], we
see that both have negligible error rates high WNR (close
to zero) and few colluders. And both become useless,
with error rates above 50%, when both the WNR is low
and there are many colluders. In between these two ex-
tremes, it can be observed that our scheme outperforms
[11].
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(a) Averaging attack (b) Cut-and-paste attack

Fig. 13: Soft input decoding in presence of Gaussian noise.

Fig. 11: Soft input decoding against the cut-and-paste attack
and Gaussian noise.

For the cut-and-paste attack, we have negligible error
rate for t = 32 pirates at WNR 0db, whereas [11] dips
sharply for t ≥ 28 and this WNR, with an error rate
of about 10% for t = 28 and 20% for t = 30. Against
10 pirates, we have negligible error rate down to WNR
-16dB, whereas [11] has an error rate around 20%.

For the averaging attack, we see that for 10 collud-
ers and WNR of -16dB, we have negligible error rate,
whereas [11] has an error rate about 10%. For 30 pirates
at WNR -12dB, we have an error rate of less than 10%
against more than 40% in [11].

Fig. 12: Soft input decoding against the averaging attack and
Gaussian noise.

4.4 Image Watermarking

As a simple proof of concept, we use the embedding
described in the previous subsection to fingerprint real
images in the blockwise DCT domain. We use 30 mid-
frequency coefficients from each block, and use a single
coefficient to embed each code bit. Among the eligible
coefficients, 30 000 were selected at random. The embed-
ding strength is α = 4. After embedding, the image was
subjected to a cut-and-paste attack and random Gaus-
sian noise in the spatial domain, with standard deviation
σ = 5α = 20.

We used three standard test images, in grayscale 256×
256. The resulting error rates are shown in Figure 15.
One sample set of images is shown in Figure 14. The
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(a) Original (b) Watermarked (c) Attacked

Fig. 14: Sample fingerprinted and attacked image. The watermarked image has PSNR 37.66dB, and the attacked one has
PSNR 24.84dB.

Fig. 15: Error rates soft-decision tracing with real images.

mean PSNR of the watermarked image was consistently
38.7dB (lena), 37.7dB (baboon), and 37.9dB (plane),
with empirical variance less than 10−26. The attacked
image had PSNR 25.9dB (lena), 24.9dB (baboon), and
25.1dB (plane) with empirical variance less than 3 ·10−4.

As our focus has been on the code development, we
are unable to say whether this is the best embedding
technique to use. Our intention is simply to demonstrate
that decent results are possible using the code presented.
To find optimal approaches, further research is needed
from a watermarking point of view.

5 Conclusion and future research

The layered WM/FP models illustrate how fingerprint-
ing and watermarking can be studied separately and
combined as black boxes, if we have a clear and common
understanding of the interface. Past works on fingerprint-
ing for the Boneh-Shaw model have often suggested to

use an underlying WM scheme, without comparing the
assumptions about the interface. Similarly, watermark-
ing works have referred to the Boneh-Shaw FP scheme
without discussing the interface. The GP model [9] is
more realistic for WM applications than Boneh-Shaw
model [4], as it allows for errors created in the water-
marking layer.

We propose two construction for the GP model. Alge-
braic outer codes are only practical for large parameters.
The construction with random outer codes is the more
flexible and was analysed experimentally and theoreti-
cally. We found a huge discrepancy between the theoret-
ical and the experimental performance. This is not sur-
prising; the theoretical analysis giving an upper bound
on error probability, and the experimental analysis giving
a lower bound. The theoretical upper bound is correct
for any adversary attack, whereas the experimental es-
timate only consider specific attacks which may not be
optimal.

It is unfortunate that other known systems from the
literature generally have been presented either with an
experimental or with a theoretical analysis; rarely with
both. Theoretically, our system has a much better in-
formation rate than that of Guth-Pfitzmann [9]. Exper-
imentally, it has similar performance to [27]; its main
advantage being that a theoretical analysis is available
as well.

We have given a simple example of how our system
can be built into a WM scheme, and compared it with
the joint WM/FP scheme of [11].

A major advantage of the code presented, is that the
error-correction capability is strong enough so that we
may not need any error-correction in the WM layer. This
allows us to use a single signal sample for each code sym-
bol. As a single sample cannot be subdivided for a cut-
and-paste attack, such attack can no longer be mounted
in the WM layer.



14

The present work raises a long list of open questions.
Some of the most important ones are the following.

1. Can other collusion-secure codes for the Boneh-Shaw
model be extended for the Guth-Pfitzmann model?
The Tardos scheme [23] is particularly interesting for
this study.

2. Is it possible to close the gap between the theoretical
and experimental error rates? One approach to this
question is to identify more effective attacks for use
in the simulations.

3. Develop theoretical error bounds for
– the collusion-secure code of [27].
– our system with soft input from the WM layer (as

in Section 4.3).
– the joint WM/FP system of [11].

4. What is the optimal watermarking system to use in
conjunction with out collusion-secure code?

It is also possible to adapt the collusion-secure code of
[2] to handle random errors using the same techniques as
in this paper, but this code is only workable for large M
and thus could not be compared using the parameters in
our experiments.

Acknowledgements The author is grateful for many use-
ful discussions with dr. Stefan Katzenbeisser, dr. Marcel Fer-
nandez, and prof. Gérard Cohen. Also, many thanks to dr.
Xunzhan Zhu and dr. Pedro Comesaña, for access to Matlab
code for watermarking; I learnt a lot from it. Finally, thanks
to the anonymous referees for their useful comments.

The theoretical research in this paper was completed as
an employee of the University of Bergen, supported by the
Norwegian Research Council. The experimental research was
completed in the author’s present post at the University of
Surrey.

References

1. International Intellectual Property Alliance, fact sheet.
http://www.iipa.com/aboutiipa.html

2. Barg, A., Blakley, G.R., Kabatiansky, G.A.: Digital fin-
gerprinting codes: Problem statements, constructions,
identification of traitors. IEEE Trans. Inform. Theory
49(4), 852–865 (2003)

3. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for
digital data. In: Advances in Cryptology - CRYPTO’95,
Springer Lecture Notes in Computer Science, vol. 963,
pp. 452–465 (1995)

4. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for
digital data. IEEE Trans. Inform. Theory 44(5), 1897–
1905 (1998). Presented in part at CRYPTO’95

5. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In:
Advances in Cryptology - CRYPTO ’94, Springer Lec-
ture Notes in Computer Science, vol. 839, pp. 257–270.
Springer-Verlag (1994)

6. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors.
IEEE Trans. Inform. Theory 46(3), 893–910 (2000). Pre-
sented in part at CRYPTO’94

7. Cox, J., Miller, M., Bloom, J.: Digital Watermarking.
Morgan Kaufmann (2002)

8. Guruswami, V., Sudan, M.: Improved decoding of Reed-
Solomon and algebraic-geometry codes. IEEE Trans. In-
form. Theory 45(6), 1757–1767 (1999)

9. Guth, H.J., Pfitzmann, B.: Error- and collusion-secure
fingerprinting for digital data. In: Information Hiding
’99, Proceedings, Springer Lecture Notes in Computer
Science, vol. 1768, pp. 134–145. Springer-Verlag (2000)

10. Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds.
Information Processing Letters 33, 305–308 (1990)

11. He, S., Wu, M.: Joint coding and embedding techniques
for multimedia fingerprinting. IEEE Trans. Information
Forensics and Security 1, 231–248 (2006)

12. Kerchoffs, A.: La cryptographie militaire. Journal des
sciences militaires IX, 5–38 (1883)

13. Koetter, R., Vardy, A.: Algebraic soft-decision decoding
of Reed-Solomon codes. IEEE Trans. Inform. Theory
49(11), 2809–2825 (2003)

14. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-
Correcting Codes. North-Holland, Amsterdam (1977)

15. Muratani, H.: A collusion-secure fingerprinting code re-
duced by Chinese remaindering and its random-error re-
silience. In: I.S.M. (Ed.) (ed.) Information Hiding 2001,
Springer Lecture Notes in Computer Science, vol. 2137,
pp. 303–315 (2001)

16. Muratani, H.: Optimization and evaluation of random-
ized c-secure CRT code defined on polynomial ring. In:
J.F. (Ed.) (ed.) Information Hiding 2004, Springer Lec-
ture Notes in Computer Science, vol. 3200, pp. 282–292
(2004)

17. Safavi-Naini, R., Wang, Y.: Traitor tracing for shortened
and corrupted fingerprints. In: Digital rights manage-
ment, Springer Lecture Notes in Computer Science, vol.
2696. Springer-Verlag (2002)

18. Schaathun, H.G.: The Boneh-Shaw fingerprinting scheme
is better than we thought. Tech. Rep. 256, Dept.
of Informatics, University of Bergen (2003). Also
available at http://www.ii.uib.no/~georg/sci/inf/
coding/public/

19. Schaathun, H.G.: Binary collusion-secure codes: Com-
parison and improvements. Tech. Rep. 275, Dept.
of Informatics, University of Bergen (2004). Also
available at http://www.ii.uib.no/~georg/sci/inf/
coding/public/

20. Schaathun, H.G.: The boneh-shaw fingerprinting scheme
is better than we thought. IEEE Transaction on Infor-
mation Forensics and Security (2006)

21. Schaathun, H.G., Fernandez-Muñoz, M.: Boneh-Shaw
fingerprinting and soft decision decoding. In: Informa-
tion Theory Workshop (2005). Rotorua, NZ

22. Schaathun, H.G., Fernandez-Muñoz, M.: Soft decision de-
coding of boneh-shaw fingerprinting codes. IEICE Trans-
actions (2006). To appear.

23. Tardos, G.: Optimal probabilistic fingerprint codes. Jour-
nal of the ACM (2005). http://www.renyi.hu/~tardos/
fingerprint.ps. To appear. In part at STOC’03.

24. Tsfasman, M.A.: Algebraic-geometric codes and asymp-
totic problems. Discrete Appl. Math. 33(1-3), 241–256
(1991). Applied algebra, algebraic algorithms, and error-
correcting codes (Toulouse, 1989)

25. Wagner, N.R.: Fingerprinting. In: Proceedings of the
1983 Symposium on Security and Privacy (1983)

26. Wu, M., Trappe, W., Wang, Z.J., Liu, K.J.R.: Collusion
resistant fingerprinting for multimedia. IEEE Signal Pro-
cessing Magazine (2004)

27. Yoshioka, K., Matsumoto, T.: Random-error resilience of
a short collusion-secure code. IEICE Trans. Fundamen-
tals E86-A(5) (2003)


