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Abstract. In this paper, we study the wavelet decomposition based
steganalysis technique due to Lyu and Farid. Specifically we focus on its
performance with JSteg steganograpy. It has been claimed that the Lyu-
Farid technique can defeat JSteg; we confirm this using different images
for the training and test sets of the SVM classifier. We also show that the
technique heavily depends on the characteristics of training and test set.
This is a problem for real-world implementation since the image source
cannot necessarily be determined. With a wide range of image sources,
training the classifier becomes problematic. By focusing only on different
camera makes we show that steganalysis performances significantly less
effective for cover images from certain sources.

1 Introduction

Steganography allows a user to hide a secret message in such a way that
an adversary cannot even detect the existence of the message. We are con-
cerned with image steganography, where the secret message is represented
by imperceptible modification in a cover image.

Over the last decade a wide variety of steganography techniques have
appeared in the literature. In response, there have also been a wide variety
of steganalysis techniques, intended to let an adversary determine whether
an intercepted image contains a secret message or not. In particular, a
number of techniques based on machine learning have emerged. Such
techniques tend to be blind, in the sense that they do not assume any
particular steganography algorithm and can usually break a variety of
algorithms.

In this paper we consider a steganalysis technique due to Lyu and
Farid [12]. This technique, claimed to break a variety of steganography
systems including Jsteg and Outguess was published in [12].

The idea in machine learning is that the steganalysis algorithm, during
a training phase, is given large sets of steganograms and natural images.
These images, where the classification (steganogram or natural image) is



known are used to tune the classification parameters. When an unknown
image is subsequently presented to the system, it is classified according
to these pre-tuned parameters.

Typically a set of professional photographs from an online database is
used. However, if the algorithm is later used to analyze images from a dif-
ferent source, the training data may not be relevant. In particular, sensor
noise from cheap cameras may have characteristics similar to an embed-
ded message. The same could be the case for images with low quality due
to poor lighting or photography skills.

In this paper we confirm this hypothesis by simulating embedding
and analysis of images from different sources. We conclude that further
research is needed to make the Lyu-Farid algorithm reliable for real-world
applications where the image source cannot necessarily be determined.
This is due to the fact that the Lyu-Farid algorithm requires detailed
information about cover source.

2 The Lyu-Farid Algorithm

In this section we explain how to implement the Lyu-Farid algorithm.
The algorithm uses a Support Vector Machine (SVM) classification. SVM
does not operate on the images themselves. Instead a feature vector (i.e. a
series of statistics) are extracted from the image to be used by the SVM.

The features used in the steganalysis are extracted from the wavelet
domain, so we will first present the wavelet transform and then the exact
features used. Subsequently we will introduce the SVM.

2.1 The Wavelet Transform

A wavelet is a waveform of limited duration with an average value of zero.
One dimensional wavelet analysis decomposes a signal into basis functions
which are shifted and scaled versions of a original wavelet [16]. Continuous
Wavelet Transform (CWT) is usually used for time continuous signals
while Discrete Wavelet Transform (DWT) is used when the signals is
sampled, as in digital image processing.

Besides its usefulness in image processing, the decomposition also ex-
hibits statistical regularities that can be exploited for certain purposes
such as steganalysis. The decomposition technique used in our experi-
ment is based on quadrature mirror filter (QMFs) [16]. The decomposition
process splits the frequency space into multiple scales and orientations
(vertical, horizontal, diagonal and lowpass subband). This is achieved by
applying separable lowpass and highpass filter along image axes.



2.2 Wavelet Decomposition Steganalysis

Two set of statistics (basic coefficient distribution and errors in an op-
timal linear predictor of coefficient magnitude)are then collected. Those
composed of mean, variance, skewness and kurtosis of the subband coeffi-
cient for different orientation and scales(s). The total of 12(s-1) for each
set of statistics collected. From [13], s value is four. Based on that, 72
individual statistics are generated. The collected statistics are then used
as a feature vector to discriminate between clean (image without payload
encoded into them) and stego (image with payload encoded into them)
images using Support Vector Machine (SVM).

2.3 Support Vector Machine

SVM performs the classification by creating a hyperplane that separates
the data into two categories in the most optimal way.

In our experiment, the SVM is employed to classify each image as
either clean or stego, based on its feature vector. For our experiment, the
feature vector are constructed from the wavelet decomposition process
discussed previously where each image is represented with the 72 indi-
vidual statistics. SVM has been shown to provide good results in [12].
Classification requires training and testing data sets. In the training set,
each individual instance has a class label value and several attributes or
features (feature vector). SVM will produce a model based on training set
data, and then using that model to predict the class of testing set based
only on their attributes.

2.4 SVM Kernel

Lyu and Farid in [12] have been using Radial Basis Function (RBF) kernel
for SVM. RBF kernel function:

K(Xi, Xj) = exp
(
−γ||Xi −Xj ||2

)
, γ > 0

where γ is a kernel parameter.
According to [8], there are four basic kernel in SVM namely Linear,

Polynomial, RBF and Sigmoid. The first three basic functions has been
tested with the input from this experiment for clarification on why RBF
used as SVM kernel in [12]. The details of the image sets or input for this
experiment are discussed in section 4. Basically, the training images is the
combination of images from all three devices (Table 2) while the test set
is from ’Canon’ and ’Sony’ set of images. Both the training and test set



are combination of clean and corresponding JSteg stego images (image
with payload encoded using JSteg). From the result in Table 1, it can be
seen that RBF really provide the best results for both set of test images.
Besides that, the suggestion on how to select the best kernel in [8] also
indicate that RBF is the best kernel to be used for wavelet decomposition
type of data.

Table 1: SVM Kernel Test
Canon Sony

SVM Kernel Linear Polynomial RBF Linear Polynomial RBF

False Negative 2.0% 2.0% 5.0% 7.0% 19.0% 6.0%
False Positive 18.0% 19% 3.0% 1.0% 0% 0%

Detection Rate 80.0% 79.0% 92.0% 92.2% 81.0 % 94.0%

3 JSteg

JSteg [17] is a steganographic method for JPEG images that can be
viewed as LSB steganography. It works by embedding message bits as
the LSBs of the quantized DCT (Discrete Cosine Transform) coefficients.
All coefficients values of ’0’ and ’1’ will be skipped during JSteg em-
bedding process which can be perform either in sequential or random
location. Quite a number of attacks have been used to defeat JSteg such
as chi-square attack [1] and generalize chi-square attack [15]. Futhermore,
Lyu and Farid in [12] have shown that their wavelet decomposition ste-
ganalysis technique is able to defeat JSteg.

4 Detection Experiment

To evaluate the performance of the steganalysis algorithm on JSteg, we
use sample images captured using Canon digital camera, Nokia N70 mo-
bile phone and Sony video camera. The details of devices used to capture
image given in Table 2.

As in [5], cover grayscale images are used due to the fact that ste-
ganalysis are harder for grayscale images. All images were crop to the
center, resulting in image sizes of 640x480 pixels and saved in JPEG im-
age format with quality factor of 75. This can help to ensure that the
image dimensions is not correlated with spatial characteristics, such as
noise or local energy as what mentioned in [3].



The images keep at fixed size of 640x480 to ensure that the collected
statistics will be at the same amount for each image since it has been
found in [10] and [3] that detection performance is likely to suffer for
smaller images.

Following the image preparation process, all the images went through
the JSteg encoding process [17] to produce a set of stego images. The
secret message is an image with size of 128x128. With the cover and
stego images ready, the wavelet decomposition steganalysis technique con-
ducted by using SVM [14] as classifier.

For SVM, the soft-margin parameter used with its default value of 0.
The only parameter tuned to get the best result is the kernel’s parameter,
γ where

γ ∈
{

2i
}
, i ∈ {0, 1, 2, 3}

The total number of images used for training and testing is 400 for each
set of images from different camera. Besides the three main set of images
(Canon, Nokia and Sony), there is another two sets of images (Combi-
nation200 and Combination600) which contains a combination of images
from each type of camera. These two sets, ’Combination200’ and ’Combi-
nation600’, have a total number of 400 and 1200 images for training and
testing accordingly.

For reference purpose, the sixth set of images included in our experi-
ment. It is a set of images from Greenspun’s database [7] which consist of
a balanced combination of indoor and outdoor images. The total number
of images for training and testing for this set is 400. This database is the
source of images used by Lyu in [12].

Table 2: Device Specification
Device Model Resolution Additional Info

Sony DCR-SR42 1 MP Digital video camera
Nokia N70 2MP Build in phone camera
Canon Powershot A550 7.1MP Canon Digital Camera

5 Discussion

Classification accuracy used in [4] and [12] to measure the performance of
their proposed method while in [6] the performance were evaluated using



Table 3: False Negative | False Positive (False Alarm)
Test Set Training Set

Canon Nokia Sony Comb.(200) Comb.(600) Greenspun

Canon 7.6% | 6.7% 28.0% | 2.7% 1.6% | 60.3% 2.0% | 9.0% 1.6% | 6.3% 31.0% | 2.0%
Nokia 42.3% | 3.0% 20.3% | 4.6% 15.6% | 36.6% 7.0% | 19.0% 7.3% | 11.0% 61.0% | 3.0%
Sony 64.0% | 6.7% 53.6% | 3.3% 3.3% | 4.6% 13.0% | 3.6% 8.6% | 1.3% 71.0% | 1.0%

Combination(200) 40.3% | 1.0% 29.6% | 4.3% 8.0% | 30.6% 8.0% | 14.3% 9.0% | 7.6% 62.0% | 0%
Combination(600) 38.0% | 0.7% 26.3% | 4.5% 7.3% | 31.3% 7.0% | 13.7% 8.6% | 3.0% 50.3% | 2.3%

Greenspun 66.0% | 9.0% 55.0% | 30.0% 6.0% | 86.0% 10.0% | 64.0% 10.0% | 61.0% 27.0% | 7.0%

Table 4: Precision

TruePositive/ (TruePositive+ FalsePositive)

Test Set Training Set

Canon Nokia Sony Combination(200) Combination(600) Greenspun

Canon 93.2% 96.4% 62.0% 91.6% 94.0% 97.2%
Nokia 95.0% 94.5% 69.8% 83.0% 89.4% 92.9%
Sony 84.3% 93.4% 95.5% 96.0% 98.6% 96.7%

Combination(200) 98.4% 94.2% 75.0% 86.5% 92.3% 100.0%
Combination(600) 98.9% 94.2% 74.8% 87.2% 96.8% 95.6%

Greenspun 87.7% 74.0% 54.4% 67.6% 67.8% 91.3%

Table 5: Detection Rate (Accuracy)

(TruePositive+ TrueNegative) / (TotalPositive+ TotalNegative)

Test Set Training Set

Canon Nokia Sony Combination(200) Combination(600) Greenspun

Canon 92.9% 84.7% 69.1% 94.5% 96.1% 83.5%
Nokia 77.4% 87.6% 73.9% 87.0% 90.9% 68.0%
Sony 64.7% 71.2% 96.1% 91.7% 95.1% 64.0%

Combination(200) 79.4% 83.1% 80.7% 88.9% 91.7% 69.0%
Combination(600) 80.7% 84.6% 80.7% 89.7% 94.2% 73.7%

Greenspun 78.0% 76.0% 58.0% 74.5% 75.5% 83.0%



’detection reliability’ ρ defined as

ρ = 2A− 1,

where A is the area under the Receiver Operating Characteristics (ROC)
curve, also called an accuracy.

For our experiment, the results in Tables 3, 4 and 5 showing the per-
formance of SVM using false negative and false positive rate (Table 3)
together with classification precision (Table 4) and classification accuracy
(Table 5). Those results confirm existing claims that te Lyu-Farid tech-
nique can be used to defeat JSteg. The detection rate for using the same
source of images for training and test sets match with claims in [12]. While
showing the success of Lyu-Farid technique, these results also shows that
the accuracy of the technique is seriously affected by the training set used.

By using confidence interval estimation technique [2], from the re-
sults, we have computed 95.4% confidence intervals for the false nega-
tive rate for Canon (3.2%, 10.2%), Nokia (14.6%, 26.0%), and Greenspun
(20.7%, 33.3%). Thus, we can confidently conclude that the steganaly-
sis algorithm is significantly less effective for cover images from certain
sources.

In [10] it has been found that JPEG image quality factor affects the
steganalyzer performance where cover and stego images with high quality
factors are less distinguishable than cover and stego image with lower
quality. Furthermore, Böhme in [3] also found that images with noisy
texture yield the least accurate stego detection. Related to those results,
in our experiment, while having the same quality factor and using the
same steganography technique, it has been shown that images captured
using high resolution devices (Canon) are more distinguishable than cover
and stego image from a low resolution device (Sony).

From [9], it has been observed that a trained steganalyzer using spe-
cific embedding technique performs well when tested on stego images from
that embedding technique, but it performs quite inaccurately if it is asked
to classify stego image obtained from another embedding technique. In
their experiment, when steganalyzer trained solely on the Outguess (+)
stego images, and asked to distinguish between cover and Outguess (+)
images, it obtains an accuracy of 98.49%. But, its accuracy for distin-
guishing cover images from F5 and Model Based images is 54.37% and
66.45%, respectively.



Having the same pattern, in our experiment, by covering all types
of image sources while training the SVM, the technique can be seen to
have a good detection rate. However, the performance decrease when the
test image type is not previously in its training set. The clearest example
is when SVM trained with ’Sony’ images and then tested with ’Nokia’
and ’Sony’. With detection rate of 96.1% for the ’Sony’ test images the
detection rate are lower for ’Canon’ and ’Nokia’ images with rates of
69.1% and 73.9% accordingly.

The Lyu-Farid technique also seems not to perform well when trained
with images from higher resolution camera and then tested with lower
resolution camera. For example, it can be seen when the SVM trained us-
ing images from ’Canon’ and tested with images from ’Nokia’ and ’Sony’.
While having an accuracy of 92.9% for ’Canon’ test set, the accuracy
decreased to 77.4% and 64.7% respectively with ’Nokia’ and ’Sony’ test
sets.

The number of images in training set also plays an important role to
ensure that the SVM are well trained. This can be seen clearly at the
differences of accuracy rate when the SVM trained using images from
’Combination200’ and ’Combination600’. With assumption that SVM is
not well trained using smaller number of images (’Combination200’ train-
ing set), the accuracy rate can be seen increased when the SVM trained
with bigger number of images (’Combination600’ training set).

The problem with the above situations is the practicality for the real-
world implementation of the technique. There is a huge diversity of image
sources in the world today. Kharrazi in [9] has demonstrated how the
computational time increases rapidly as the training set size increases. In
his experiment, by having training set consists of 110 000 images, it would
take more than 11 hours to design or train the non-linear SVM classifier.
In our case for example, if there is new source of image found or designed,
then the SVM classifier has to be retrained. If we try to cover all possible
image sources, we can imagine how long it would take to retrain the SVM
classifier.

Also related to image source diversity, is the attempt to train the
classifier with all possible type of images in the public domain. Some
researchers are trying this using a million images in the training set [9].

6 Conclusion

In our experiments we investigated the performance of Lyu-Farid ste-
ganalysis on JSteg using cover images from different sources. Our exper-



iments show that performance claims previously made have to assume
knowledge about the cover source. If the steganalyst is not able to train
the SVM using cover images from a very similar source, significant error
rates must be expected.

In the case of Jsteg, Lyu-Farid seems to get reasonable performance
if a large and mixed training set is used (as in the Combined 600-set).
A training set to enable reliable detection of any steganogram using any
cover source would probably have to be enormous.

Even when we have been able to train on images from the correct
source, we observe that some sources make steganalysis difficult. Images
from the Nokia phone and from the Greenspun database have signifi-
cantly higher false negative rates than other sources. An interesting open
question is to identify optimal cover sources from the steganographer’s
point of view.

It may very well be possible to design steganographic algorithms
whose statistical artifacts are insignificant compared to the artifacts of
a particular camera. This is to some extent the case for SSIS [11] which
aims to mimic sensor noise which is present (more or less) in any camera.

On the steganalytic case, quantitative results would be more interest-
ing if real world implementation is considered. How large does the training
set have to be to handle any source? Are there other important charac-
teristics of the image which must be addressed, such as the ISO setting
of the camera, lighting conditions and also indoor versus outdoor?
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