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Abstract

Pseudo-random number generation is a fundamental problem in computer programming. In the case
of sequential processing the problem is very well researched, but parallel processing raises new
problems whereof far too little is currently understood.

Splittable pseudo-random generators have been proposed to meet the challenges of parallelism.
While applicable to any programming paradigm, they are designed to be particularly suitable for
pure functional programming. In this paper we review and evaluate known constructions of such
generators, and we identify flaws in several large classes of generators, including Lehmer trees, the
implementation in Haskell’s standard library, leapfrog, and subsequencing (substreaming).
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1 Introduction

Pseudo-random number generation is one of the fundamental problems of computer sci-
ences. Its history from computer infancy onward is documented, for instance, in Don-
ald Knuth’s classic book (1998). Random numbers are essential for many applications,
including simulations, cryptography, random sampling, and gaming. However, true ran-
dom values have two drawbacks. Firstly, the entropy available is limited, and many ap-
plied problems would be intractable if limited by the availability of physical entropy.
Secondly, many applications require repeatability, i.e. we want to be able to regenerate the
same pseudo-random sequence in a later experiment. A pseudo-random number generator
(PRNG) solves these two problems.

A classic PRNG is inherently sequential, and this is a major drawback in some applica-
tions. In a parallel program, each thread needs its own pseudo-random sequence, where
each sequence is statistically independent of all the others. If new threads are created
dynamically, new PRNGs must be seeded with the spawning thread’s PRNG as the only
source of entropy.

In a pure functional programming paradigm, the problem is even more fundamental.
Without global state, the PRNG must be passed as an argument to every function requiring
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entropy. The bookkeeping of doing this in practice can be overcome by using monads.
Unfortunately, such use of monads would still force an execution sequence in order to
ensure deterministic behaviour. This sequencing prevents parallel execution on multi-core
systems and potentially also some compiler optimisation.

Burton and Page (1992) introduced the concept of splittable PRNGs, which has been
adopted by the standard library of Haskell. A function, split, is provided to return two
generators (g1,g2) from a single generator g. Thus the calling function can split its own
generator g and pass g2 to another function and keep g1 for subsequent operations. The
splittable PRNG does not create any dependency between evaluations, preserving ref-
erential transparency and leaving the compiler free to parallelise calculations. The split
operation of Haskell was recently shown to be unsound by Claessen and Pałka (2013a)
by providing an example of software failure in practice. They also proposed a splittable
PRNG based on cryptographic hashing. Apart from Claessen and Pałka’s work, very little
work on splittable PRNGs can be found in the literature.

In this paper we review and assess known constructions of splittable pseudo-random
generators, finding flaws in most of them. In particular, we prove that there is an affine
dependency in splittable PRNGs based on the classic Lehmer algorithm including the
implementation in Haskell’s standard library. We start with a literature review in Section 2,
before we define mathematical concepts in Section 3. Section 4 reviews known construc-
tions, and Section 5 evaluates them. Finally, we conclude in Section 6.

2 Historic Overview and Related Research

Pseudo-random number generation for parallel processing has been studied since the 1980s.
The idea of a splittable PRNG can be traced back to Warnock (1983), who discussed the
simulation of particle physics. He suggested using three distinct linear recurrences. The
first recurrence would be used to generate a seed for each of the particles at the start of
simulation, thus associating with each particle its own generator. The second recurrence
would be used to control the pseudo-random behaviour of an individual particle, using
and updating the seed associated with this particle. The third recurrence would be used
to generate a new seed to be associated with new particles being spawned. In this case,
the spawning particle’s seed would be used and not updated. Thus, the spawning of a new
particle would not change the behaviour of the parent, since no number from the second
recurrence is expended.

Warnock’s generator can be seen to generate a tree, rather than a sequence, of pseudo-
random numbers, and this came to be known as Monte Carlo trees. Frederickson et al.
(1984) formalised the construction based on Lehmer’s algorithm, under the notion of
Lehmer trees. Several authors have studied methods to assess the randomness of Monte
Carlo trees based on Linear Congruential Generators (Percus & Kalos, 1989; Halton,
1989), and it is well-known that the parameters used for the original Lehmer trees give
poor randomness (Eddy, 1990; Koniges & Leith, 1989; Wu & Huang, 2006). Yet, there
does not seem to have been any general results which would reject Lehmer trees or other
Linear Congruential trees altogether. The Haskell library documentation only concludes
that there has not been sufficient research on the matter (Hackage, 2011).
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In the sequential case, linear congruential generators are extremely popular in the literat-
ure. Their statistical weaknesses have long been well-known (Marsaglia, 1968; Krawczyk,
1992). In spite of the weaknesses, linear and combined congruential generators are satis-
factory for many applications, and they dominate the reference literature in areas such as
computation statistics (L’Ecuyer, 2012).

Whereas Warnock had been motivated by a practical simulation problem, aiming for
data-parallel application of pseudo-random generators, Burton and Page (1992) discussed
specifically the problem of pseudo-random generators in parallel, pure functional pro-
grams. They described the API of splittable PRNGs, including the split method that has
been adopted by Haskell’s System.Random library. Essentially, this split method is re-
sponsible for the branching in a Monte Carlo tree.

In spite of several useful applications of splittable generators and Monte Carlo trees,
most of the literature has focused on parallel instantiation of sequential generators for
multiprocessors systems. This topic can also be traced back to the 1980s, e.g. (Eddy, 1990;
Koniges & Leith, 1989), and has also received recent attention (Salmon et al., 2011). Even
papers on Monte Carlo trees sometimes seem to have this simpler problem in mind (e.g.
Frederickson et al. (1984)), using (say) the left-hand generator to branch and create a
generator state per process. The right-hand generator is then used to generate the sequence
for each of the processors. A very popular approach to parallelising an otherwise sequential
PRNG is to split the output into subsequences or substreams. Several authors have studied
different approaches to generating such subsequences (Matteis & Pagnutti, 1990; Burton &
Page, 1992). Under the notion of streams and substreams, L’Ecuyer et al. (2002) discussed
an object-oriented implementation to support extraction of parallel subsequences from a
PRNG with long period. Wu and Huang (2006) discussed parameter selection for parallel
linear congruential generators, and concluded that great care must be taken in the design.

Randomness testing has been studied by many authors. A classic, but still frequently
cited reference is Knuth (1998). The TestU01 suite (L’Ecuyer & Simard, 2007) and Die-
harder (Brown, 2015) are comprehensive software tools covering large ranges of tests.
Several authors (Cuccaro et al., 1995; Salmon et al., 2011) have discussed randomness
testing of parallel pseudo-random generators. Cuccaro at al. (1995) additionally discussed
repeatability testing of splittable generators.

Matsumoto and Nishimura (1998) discussed dynamic creation of new pseudo-random
generators by embedding an ID into the characteristic polynomial of the PRNG. The ID
could for instance be a thread or process ID, which would give each thread or process
different pseudo-random numbers. Matsumoto et al. (2007) discussed common defects of
sequential pseudo-random generators and introduced the concepts of nearly affine depend-
ence and difference collisions.

A very recent approach uses a hash function on the path from the root to the current
node in the Monte Carlo tree. A convincing proposal (Claessen & Pałka, 2013a) simply
encodes this path as a binary string and applies a cryptographic hash function to generate
pseudo-random output. This solution is related to Leiserson et al’s (2012) construction of a
deterministic PRNG for dynamic threading (dthreading) architectures. Leiserson et al also
did some statistical testing of their proposed PRNG.
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3 Definitions

3.1 Sequential number generation

We view a PRNG as a state machine with a state space S . The state transition next′(g) =
(r,g′) gives a new generator (state) g′ and a pseudo-random output r from some range R.
More formally, we can define it as follows.

Definition 1
A pseudo-random number generator (PRNG) is a tuple G = (S ,next,R,ext), where S

and R are finite sets and next : S →S and ext : S →R are functions. We write next′ g=
(ext◦nextg,nextg), where ◦ denotes function composition and binds more tightly than
function application.

The definition of next′ has been chosen to match most known implementations, and the
Haskell standard library in particular, which calculate the new state first and then use it to
calculate the output. One may argue that it would be better to use next′′ g = (extg,nextg).

The choice of range R matters little, as various well-known techniques exist to map a
random value from one range and probability distribution into another. The design of such
techniques is a problem separate from the design of good PRNGs. Most known PRNGs
produce uniformly distributed integers in some range (Rmin,Rmax) as raw output, usually
with Rmin = 0 or Rmin = 1. Generators which produce floating point values typically take
the integer output r and divide by Rmax or Rmax +1. Thus a random value in the interval
(0,1) is produced. The interval may be open or closed at either end.

A PRNG is instantiated by providing an initial state g0, which is called the seed. A pair
(G,g) of a PRNG G and a state g∈S will be called an instance of the PRNG. The instance
defines the pseudo-random sequence [xi]i=1,2,... via the recurrence (xi,gi) = next′ gi−1 and
g0 = g.

The period of a pseudo-random sequence [xi] is a well-known evaluation heuristic. It
is the smallest number t > 0 such that xi = xi+t for all i ≥ k for some k. All pseudo-
random generators with finite state space give sequences with a finite period, underlining
the fact that they are deterministic. Generally the period must be sufficiently large to ensure
that only a fraction thereof is ever used in a given application. The period of an instance
(G,g) of a PRNG is the period of the pseudo-random sequence it defines. Observe that the
period is a property of the instance and not of the PRNG. Different instances of the same
PRNG may have different period. We can define the minimal period of the PRNG to be the
smallest period of any instance thereof.

A PRNG can be viewed as a directed graph where the state space S forms the set of
nodes. Each node s∈S has out-degree one, with an edge (s,nexts). We will use the graph
view to illustrate key properties of splittable generators later.

The purpose of a PRNG is to generate number sequences which appear as if they were
random. In cryptology the common requirement is that no polynomial time algorithm exists
able to distinguish between the PRNG output and a truly random sequence with probability
significantly better than 50% (Menezes et al., 1997). In simulation a weaker requirement
is common, where it suffices that the PRNG pass a battery of selected randomness tests
(Knuth, 1998).
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3.2 Parallel number generation

A parallel pseudo-random number generator (P-PRNG) is designed to support multiple
parallel, independent instances of the generator. In other words, a P-PRNG can be in-
stantiated to give a list [(G(1),g(1)),(G(2),g(2)), . . . ,(G(N),g(N))] of generator instances.
To be useful, the pseudo-random sequences generated by the different constituent PRNG
instances have to be statistically independent, in addition to each one being pseudo-random
in its own right.

The typical application of a P-PRNG is to furnish each thread in a parallel program
with its own generator, and the P-PRNG is suitable when the number of threads is known
a priori. In this case, a P-PRNG can be instantiated and the constituent PRNG instances
distributed across the threads. In contrast, the P-PRNG does not directly cater for new
threads being spawned dynamically. There is no general way to find a new and unused
PRNG instance at an arbitrary point in the program without using global state.

The PRNGs G(i) may or may not be distinct (Salmon et al., 2011). In a multi-stream
approach, a family of distinct PRNGs G(i) is required, typically by varying some parameter
in the algorithm. For instance, in Lehmer’s algorithm the multiplicative coefficient can be
varied (Mascagni, 1998). The substream approach uses a single PRNG G = G(i) for all
i and varies only the state g(i). This means that the pseudo-random sequence is divided
between the instances by choosing different starting points (seeds) g(i). The elements of a
substreaming P-PRNG instance can be viewed as virtual generators (L’Ecuyer et al., 2002),
as the same real generator underlies every constituent instance.

3.3 Splittable number generators

A splittable pseudo-random number generator (S-PRNG) would provide an additional
function:

split : S →S ×S .

A typical application of split is when a subroutine is called, requiring a pseudo-random
source. A call to split returns two generator instances; one of which can be fed to the
callee, and one which can be used by the caller for further randomised behaviour. Thus the
callee does not have to return a modified state of the generator, and the caller does not have
to process such a return value. Furthermore, as long as there are no other dependencies,
subsequent operations of the caller and callee may be parallelised with great flexibility. Let
us formalise the definition as follows.

Definition 2
A splittable pseudo-random generator (S-PRNG) is a tuple G=(S ,splitL,splitR,next,R,ext),
where S and R are finite sets, splitL,splitR,next are functions S → S , and ext is a
function S →R. We write splitg = (splitL g,splitR g).

Note that the functions splitL,splitR,next are not necessarily bijective, just as next does
not have to be bijective in a sequential PRNG. The definition of split can be extended to
instances, so that

split(G,g) = ((G,splitL g),(G,splitR g)).
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An S-PRNG is more general than a P-PRNG. The P-PRNG provides only a single pool
of generator instances, whereas the S-PRNG allows new parallel instances to be created
whenever one instance is available. Given an instance (G,g0) of an S-PRNG, we can
instantiate a P-PRNG via the recurrence gi = splitR gi−1 and use (G,splitL gi) as constituent
generator instances.

Like other PRNGs, the S-PRNG is a state machine, which in turn can be viewed as
a directed graph. For the S-PRNG, the nodes have out-degree at most three, with edges
defined by next, splitL, and splitR respectively. Smaller out-degree is caused by two or
three of the maps (edges) coinciding on a particular node. A collision between the two split
operations should only occur for a negligible fraction of the state space, to avoid statistical
deficiencies. In contrast, some constructions use next= splitL or next= splitR, giving every
node out-degree at most two, and this causes no problem since split and next are never both
applied to the same node. Paths define strings over the alphabet {next,splitL,splitR}, and
we call them operations on the S-PRNG.

Definition 3
Consider an S-PRNG G = (S ,splitL,splitR,next,R,ext). An operation of length m on G
is a string s = [ f1, f2, . . . , fm] of m tokens from the alphabet {next,splitL,splitR}. We write
L(s) = m for the length.

By function composition, any operation s = [ f1, f2, . . . , fn−1, fn] defines a function on
S . By abuse of notation, we will use the same notation for the function and the operation,
and write

s = fn ◦ fn−1 ◦ . . .◦ f2 ◦ f1.

Note that the set of all functions S → S is finite, whereas the operations, defined as
strings of arbitrary length, make an infinite set.

The periodicity of pseudo-random sequences corresponds to cycles in the graph defined
by the (S-)PRNG.

Definition 4
Consider an S-PRNG G=(S ,splitL,splitR,next,R,ext). A cycle of g∈S is an operation
s such that s(g) = g. A (generic) cycle of G is an operation s which is a cycle for every
g ∈S .

Where the sequential generator allows only a single path between two given states g1 and
g2, the S-PRNG may have multiple paths between any pair of states. If there are two short
paths from g1 to g2, there is a significant risk that g2 be used twice once g1 has been used,
and this would lead to significant bias. Therefore, we introduce a couple of new concepts
to be able to discuss such paths in depth.

Definition 5
Let G = (S ,splitL,splitR,next,R,ext) be an S-PRNG and g ∈S a state. A bad pair of
operations of length m for g is a pair of operations (s1,s2) where

1. s1(g) = s2(g)
2. The first element where s1 and s2 differ has to be a split (neither operation may have

next).
3. m = max(L(s1),L(s2)), where L denotes the length of an operation.
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The second restriction means that both operations can be applied to the same state in a
valid program, where next should never be called on the same state as split. The condition
permits a common prefix sp such that s1 = s′1 ◦ sp and s2 = s′2 ◦ sp. It requires, however,
that if sp is the longest common prefix, then s′1 has to start with splitL and s′2 with splitR or
vice versa. Note that if (s1,s2) is a bad pair of operations for g, then (s′1,s

′
2) is a bad pair of

operations for sp(g) and vice versa.

Definition 6
Let G = (S ,splitL,splitR,next,R,ext) be an S-PRNG. A (consistently) bad pair of oper-
ations for G is a pair (s1,s2) which is a bad pair of operations for every g ∈S .

Remark 1
If a consistently bad pair of operations of length m exists for an S-PRNG G, then there is a
program which always repeats a state, regardless of the initial seed, making no more than
2m applications of split or next on G.

Where a sequential PRNG defines a (periodic and infinite) sequence of states [g1,g2, . . .],
the S-PRNG defines a Monte Carlo tree. Given a root g0, an infinite, ternary tree is obtained
where each node is labelled with a state g ∈ S and has three children labelled splitL g,
splitR g, and nextg respectively. A node can be identified by the root g0 and the path
therefrom, that is an operation on the S-PRNG. In an application, one would not call split
and next on the same state (Claessen & Pałka, 2013a), so the states actually traversed will
form a binary subtree.

4 Known Proposals for Splittable PRNG

4.1 Lehmer trees

The original Lehmer algorithm defines a sequence of pseudo-random numbers via the
recurrence

si = a · si−1 + c mod m. (1)

The output is equal to the new state, that is exts = s.
Based on this algorithm, Frederickson et al. (1984) introduced Lehmer trees. We need a

left and right state transition function with different coefficients, defined as follows:

splitR(s) = aR · s+ cR mod m, (2)

splitL(s) = aL · s+ cL mod m. (3)

4.2 Haskell’s System.Random

The Haskell library implements the Portable Combined Generator of L’Ecuyer (1988) for
32-bit computers with an additional split operation. It is a Multiple Recursive Generator
(MRG) combining two LCGs. The period is roughly 2.30584 ·1018, with an output range of
more than 30 bits. The combined generator is designed to be at least as statistically robust
as the Minimal Standard Random Number Generator described by Park and Miller (1988)
and Carta (1990).
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The Combined Generator is composed of two constituent random generators, each using
Lehmer’s algorithm with c = 0 and the following values for a and m:

a1 = 40014 m1 = 2147483563 (4)

a2 = 40692 m2 = 2147483399. (5)

This gives S = Zm1 ×Zm2 as the state space. The state transition function will advance
each constituent generator to the next state s′i, i.e. we write the function as

next : (s1,s2) 7→ (s′1,s
′
2),

where s′i = aisi mod mi
(6)

The random integer output z is obtained as the difference between the two substates (con-
stituent outputs), adjusted to fit the desired range, that is

ext(s1,s2) =

{
(s1− s2)+m1−1 if (s1− s2)< 1

(s1− s2) otherwise.
(7)

Thus the range is R = {1,2, . . . ,m1−1}.
No split function was defined by L’Ecuyer (1988), but Haskell implements the following

definition.

split :(s1,s2) 7→ ((s′1,s
′′
2),(s

′′
1 ,s
′
1)),

s′′1 =

{
1 if s1 = m1−1

s1 +1 otherwise

s′′2 =

{
m2−1 if s2 = 1

s2−1 otherwise

(s′1,s
′
2) = next(s1,s2).

This essentially turns each substate into a Lehmer tree, except for the correction to avoid
zero states, something which is necessitated by the zero additive constant in (6). There is no
statistical foundation for the split function defined above, and the documentation (Hackage,
2011) says:

Until more is known about implementations of ’split’, all we require is that
’split’ deliver generators that are (a) not identical and (b) independently robust
(...)

4.3 Substreaming

Substreaming (also known as subsequencing) of congruential generators is a common
approach to construct a P-PRNG (Wu & Huang, 2006) and has been suggested for S-PRNG
as well (Burton & Page, 1992). We will need the following auxiliary definition.

Definition 7
Let A be an arbitrary set. For any function f : A → A, we write f (1) = f and define
recursively f (n) = f ◦ f (n−1) for n > 1,
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A pseudo-random sequence [x1,x2, . . . ,xn] can be subsequenced in two different ways.
Regularly spaced segments (also known as substreams) means that we split the sequence
into blocks [x1,x2, . . . ,xdn/2e] and [xdn/2e+1,xdn/2e+2, . . . ,xn]. Depending on the underlying
PRNG, it may or may not be necessary to generate the entire sequence explicitly to make
the split.

Definition 8
For any PRNG G= (S , f ,R,ext) we define a corresponding S-PRNG by regularly spaced
segments as G′ = (S , f ,splitL,splitR,R,ext) where

splits = (s, f (dn/2e)(s)).

where n is the period of the PRNG.

The leapfrog construction takes odd indices for one subsequence and even ones for the
other, to get [x1,x3, . . .] and [x2,x4, . . .]. The easiest way to define leapfrog is to ignore the
definition of S-PRNG and define the split-operation in terms of generator instances instead
of generator states. Any S-PRNG can be fit into this framework by setting G1 = G2 = G
and (g1,g2) = splitg. To define leapfrog, write G = (S ,next,R,ext), and let split(G,g) =
((G1,g1),(G2,g2)) be given by

g1 = nextg and g2 = next◦nextg

G1 = G2 = (S ,next◦next,R,ext).

There is an S-PRNG construction which is equivalent to the above. We observe that the
next-function is replaced whenever an instance is split. Thus we need to integrate this
function into the state.

Definition 9 (Leapfrog)
For any PRNG G = (S , f ,R,ext) we define a corresponding S-PRNG by leapfrog as
G′ = (S ′,next,splitL,splitR,R,ext) where

S ′ = S ×{ f (i) : i = 1,2,3, . . .},
next(g, f ) = ( f (g), f ),

splitL(g, f ) = ( f (g), f ◦ f ),

splitR(g, f ) = ( f ◦ f (g), f ◦ f ).

Note that S ′ is finite. The second element of the pair is a function S →S , and since
S is finite, there is a finite number of such functions, and hence the f (i) cannot all be
distinct.

4.4 Random Jumps

A pseudo-random sequence can be split by using the sequence itself to choose random
positions in the sequence (Burton & Page, 1992). Given a PRNG, consider the sequence
of states [g0,g1, . . .] where gi = nextgi−1 and g0 is the initial state, and let rand g = gextg.
The split operator can be defined as

splitg = (rand g,nextg). (8)
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We have not seen any concrete proposals for splittable generators based on this generic
construction, but it is easy enough to implement it with the Haskell’s Portable Combined
Generator.

It is tempting to adapt the random jump construction for combined generators, applying
(8) differently to each constituent generator. For instance, we can use the following for
multiple congruential generators:

split :(g1,g2) 7→ ((g′1,g
′′
2),(g

′′
1 ,g
′
1)), where (9)

(g′1,g
′
2) = next(g1,g2),

g′′1 = ag1
1 · s1 mod m1,

g′′2 = ag2
2 · s2 mod m2,

where si is the initial state (seed) of constituent generator i. We note that the exponentiation
in the definitions of g′′i will make split computationally much more expensive than next;
yet with square-and-multiply the cost is likely to be acceptable.

4.5 The Claessen-Pałka generator

Claessen-Pałka (2013a) introduced an S-PRNG based on cryptographic hashing. In es-
sence, it is a generalisation of counter mode, which allows any any block cipher to be used
as a sequential PRNG.

Definition 10 (Counter Mode)
Let ek : Z2m → Z2m be an encryption function of some block cipher. The elements of
Z2m are viewed dually as m-bit strings and integers modulo 2m. Counter mode defines
the PRNG G = (Z2m ,next,Z2m ,ext), where

nexts = s+1 mod 2m,

exts = ek(s).

Instead of the integer state where next adds one, we can use a binary string and append
a 1. Replacing the encryption ek with a hash function hk, strings of arbitrary length can be
handled. The split operation can then be defined by appending 0 in one branch and 1 in the
other, as follows.

Definition 11
Given some hash function hk, we define an S-PRNG where the state space is the set {0,1}∗
of all binary strings, and

extx = hk(x),
splitL x = x||0,
splitR x = x||1,
nextx = splitR x,

where || denotes concatenation.

Using the Merkle-Damgård construction for hk, it is not necessary to store the entire
string x for the state. The string is split into blocks of fixed length, and it suffices to store
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the last (possibly incomplete) block alongside the hash of all preceding blocks. Thus the
state space is made finite, and the time and memory complexities become constant.

The final construction of Claessen and Pałka (2013a) includes a couple of variations and
tricks to optimise the implementation. We omit details which are not significant for the
mathematical analysis. They provide the tf-random package (Claessen & Pałka, 2013b)
for Haskell, using ThreeFish as the block cipher underlying the Merkle-Damgård hash
construction.

Clearly, other hash functions can be used instead of ThreeFish and Merkle-Damgård.
Leiserson et al’s (2012) discussed a couple of alternative hash functions for a similar PRNG
construction, and their considerations are valid also for the Claessen-Pałka construction.

There is an inverse construction as well. Given an S-PRNG, we can construct a hash
function as follows. Let the secret key be the seed g. To hash a binary string x we map it
into an operation s by 1 7→ splitR and 0 7→ splitL. The hash value of x is ext◦s(g). Claessen
and Pałka (2013a) pointed out this equivalence of constructions, but did not formally prove
any equivalence between the anti-collision properties of hash functions and randomness of
an S-PRNG.

5 Assessment of the Known Constructions

5.1 Risk of repeating states in general

With a sequential PRNG of period N, one may expect to safely use O(N) random numbers.
There are several arguments to say that an S-PRNG can never achieve this linearity. If
we want an absolute guarantee against repeated states, we can only use O(logN) random
numbers in general, as the following proposition shows.

Proposition 1
Let G = (S ,splitL,splitR,next,R,ext) be an S-PRNG, where N = #S ≥ 2, For any g ∈
S , there is a bad pair of operations for g, with length at most m = dlog2 Ne.

Proof
Consider a complete finite subtree T of the Monte Carlo tree, comprising the root g at
level 0 and all children generated by split down to level m inclusive. This tree has 2m+1−1
nodes. Since #S = N ≤ 2m < 2m+1−1, there must be a repeated state g′ in T . The paths to
the two nodes labelled g′ form a bad pair of operations (s1,s2). Since both operations are
paths within a tree of depth m, the length of the pair is at most m.

Note that this proposition does not imply that there is a bad pair of operations for G.
Different pairs may be bad for different states. In many applications it may be possible
to control the negative effect of bad pairs of operations by rerunning the application with
different seeds. Unless the same pair is bad for a large proportion of the state space, it is
unlikely to be repeated.

Another bound, saying that we cannot use more than O(
√

N) numbers from an S-PRNG
in general, stems from the birthday paradox, and it has previously been pointed out by Wu
and Huang (2006) in the context of random jumps. If elements are drawn randomly from
a set of N elements without replacement, the expected number n of elements drawn before
a repetition is found, is O(

√
N) (Klamkin & Newman, 1967). Both random jumps and the
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hash-based S-PRNG have a split function where splitL aims to jump to a random location
in the sequence generated by splitR or next (and splitR = next). If the left split is truly
random, then the birthday paradox clearly applies and implies that a collision is expected
before O(

√
N) splits where N is the size of the state space. Admittedly, we do not have true

randomness and thus it may not be entirely clear what really happens. However, it is fair
to say that the only cure against the birthday paradox in an S-PRNG is poor randomness.

5.2 Substreaming

Substreaming is an important tool for parallel pseudo-random number generation, but it is
inadequate as a splittable PRNG. If we consider the pseudo-random sequence to have finite
length N, it is obvious that log2 N consecutive splits leave us with segments of length 1.
Even the Mersenne Twister with N ≈ 265000 would run out of random numbers in a medium
sized application. If we view the sequence as infinite and periodic, we risk repeated states.
This can be phrased formally as follows.

Proposition 2
Let G be the S-PRNG obtained by regularly spaced segmenting of some PRNG instance
of period N. Then next◦split(m−1)

R is a generic cycle of length m = blog2 Nc+1 for G,

Proof
Let [g1,g2, . . . ,gN ] be the sequence of states traversed by the underlying PRNG instance.
Observe that split(m−1)

R (g1) = gN , and hence next◦split(m−1)
R (g1) = g1 as required. Since

the sequence of states is periodic, we get the same result regardless of which state is chosen
as g1.

5.3 Leapfrog

Leapfrog effectively changes the next operation when an instance is split, and this makes
it a little harder to analyse. First observe that a state (in general) may be repeated or
unreachable. A repeated state g has the property that there is a t ≥ 1, such that next(t) g = g
and forms an orbit orb(g) = {next(i) g|i = 1,2, . . . , t}. When the PRNG is seeded by g,
orb(g) is the set of states which may be used in the program. An unreachable state has
no such t and is not in any orbit, even though it must be part of a sequence ending up in
an orbit. Observe that the orbits may have different orders, and hence not every sequence
produced by the PRNG has the same period.

Studying a single orbit at a time, it is possible to find consistently bad pairs of operations
for an S-PRNG based on leapfrog. Given a PRNG G = (S ,next,R,ext), we write Sg =

orb(g) and define Gg = (Sg,next,R,ext). Observe that next is a bijection on Sg.
We need to distinguish between odd and even period. Note that next generates a group

P acting on Sg. If P has even order N = #P, then next◦next generates a subgroup of
order N/2. Consequently the generator instances created by splitR and splitL each use
disjoint halves of the state space. In the extreme case where the period is a power of two,
repeated splitting leads to generators with singleton state space, where no further splitting
is possible. If N is odd, then next◦next generates P and splitR and splitL yield instances
using the entire state space Sg in different orderings.
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Lemma 1
Let Gg be a PRNG with a single orbit of odd order N. Splitting Gg using leapfrog gives an
S-PRNG with a bad pair of operations of length at most 2dlog2 Ne−1.

Proof
Write m = dlog2 Ne. Consider the two operations

s1 = split
(m−1)
R ◦splitL,

s2 = split
(m−1)
L ◦splitR,

and apply them to an arbitrary state (g, f ). We get

s1(g, f ) = (g1, f1) = ( f (r1)(g), f (2
m)),

s2(g, f ) = (g2, f2) = ( f (r2)(g), f (2
m)).

If g1 = g2 then (s1,s2) is a bad pair of operations as required, so consider the case where
g1 6= g2. Then g1,g2 are distinct elements of the cycle generated by Gg. Since the period
N is odd, there is an even number 1 ≤ N0 < N such that either g1 = f (N0)(g2) or g2 =

f (N0)(g1). Because of symmetry, it is sufficient to consider the first case.
We will design an operation s′2 such that

s′2(g, f ) = (g1, f1) = ( f (N0+r2)(g), f (2
m)),

which would make (s1,s′2) a bad pair of operations. We will design s′2 by inserting extra
next-operations into s2, so consider

s′2 = qm−1 ◦qm−2 ◦ . . .◦q1 ◦ splitR,

where qi is either splitL or splitL ◦next. Let Q be the set of indices for which qi = splitL ◦next.
We get that

s′2(g, f ) = (g′2, f2) = ( f (r2+N′)(g), f (2
m)),

where

N′ = ∑
i∈Q

2i.

It is easy to see that Q can be chosen such that N′ = N0, and thus we get a bad pair of
operations (s1,s′2) of length at most 2m−1.

Proposition 3
Let Gg be a PRNG with a single orbit. Splitting Gg using leapfrog gives an S-PRNG with
a bad pair of operations of length at most 2dlog2 Ne−1 where N is the period.

Proof
Write #S = 2k ·N′ where N′ is odd. Consider the instance (G,g) where g has period
N. Then the instance (G,split

(k)
L g) has period N′ and by Lemma 1, it has a bad pair of

operations (s1,s′2). In the proof of the lemma, we note that (s1,s′2) depends only on the
order N′ and not on the particular instance. Hence (s1 ◦ split(k)L ,s2 ◦ split(k)L ) is a bad pair of
operations for Gg of length at most 2dlog2 Ne−1.
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Figure 1. Split generators for the quad test.

One might think that a result on a single orbit is very limiting. However, the sum of the
periods of all the orbits is upper bounded by the size of the state space. Hence, having many
orbits would be at the expense of the period. Furthermore, if the PRNG has multiple orbits
of orders N1,N2, . . . ,Nn, then the argument of the proofs of Lemma 1 and Proposition 3 can
be used to construct a consistently bad pair of operations of length at most 2dlog2 `e− 1
where ` is the least common multiple of all the Ni. Thus, to ensure that any bad pair of
operations is very long, the state space necessarily becomes very large compared to the
minimal period.

5.4 Lehmer trees and the Haskell generator

Consider the generators arising when we split twice, as shown in Figure 1. We shall see
that the Lehmer tree gives a dependency between gLR and gRL. The generator implemented
in the Haskell standard library is a variation of Lehmer trees, and has the same problem.
We consider the two generators gLR and gRL as well as their parents and grandparent.

Theorem 1
Let G = (S ,splitL,splitR,next,R,ext) be a Lehmer tree. For any initial state g, there is
a constant difference between the two generator states gRL = splitL ◦splitR g and gLR =

splitR ◦splitL g, as follows:

gRL−gRL ≡ (aL−1)cR− (aR−1)cL (mod m),

where cL and cR are the left and right additive constants and aL and aR are the correspond-
ing multiplicative constants used by the Lehmer functions.

Proof
Consider the compositions

splitL ◦splitR g = aLaR ·g+aLcR + cL mod m, (10)

splitR ◦splitL g = aRaL ·g+aRcL + cR mod m, (11)

and taking the difference, we get the congruence stated in the proposition.

Theorem 2
Let G = (S ,splitL,splitR,next,R,ext) be the Haskell S-PRNG as defined in Section 4.2.
Consider a random state g, and write gLR = splitL ◦splitR g and gRL = splitR ◦splitL g.
Except with negligible probability ≤ 3 ·2−30, the following congruences hold:

g(1)RL −g(1)LR ≡ a1−1 (mod m1),

g(2)RL −g(2)LR ≡ a2−1 (mod m2).
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where g(1)∗ and g(2)∗ denote the two substates of g∗.

Proof
We will prove that the theorem holds except when g(1)∗ = 1 or g(2)∗ = m2−1 for some g∗ ∈
{g,gL,gR}. Observe that when g∗ ∈S is drawn at random, we have P(g(1)∗ = 1) = 1/m1

and P(g(2)∗ = m2− 1) = 1/m2. Each probability is roughly 2−31, and the probability that
one of the events occur for one of the states g,gL,gR is less than 3 ·2−30.

Ignoring these improbable cases, we write

g(1)LR = a1g(1)+1 mod m1,

g(2)LR = a2(g(2)−1) mod m2,

g(1)RL = a1(g(1)+1) mod m1,

g(2)RL = a2g(2)−1 mod m2,

and by subtracting the first from the third equation, and second from the fourth, we get the
two congruences stated in the theorem.

Similar dependencies exist between the pseudo-random output generated by gLR and
gRL. Let [gi] and [g′i] be the sequences of states generated recursively by next starting at
gLR and gRL respectively. It is easy to see that

g(1)i −g′(1)i ≡ ai
1(a1−1) (mod m1),

g(2)i −g′(2)i ≡ ai
2(a2−1) (mod m2).

Observing the ext-function in (7), we note that that there are only four possible values for
extgi− extg′i.

5.5 Statistical testing

The proofs of Theorems 1 and 2 are self-contained pieces of algebra, but they were not
conceived as such. Our approach started with statistical testing, which was necessary to
identify the offending combinations of states.

A comprehensive discussion of testing is beyond the scope of this paper. We have only
tried a few simple tests sufficient to find flaws in most of the constructions studied. Our tests
are based on the serial test (Knuth, 1998), which is well-known for testing of sequential
generators. It is the simplest and most straight forward among the tests for correlation
between elements in a sequence.

Definition 12 (Serial test)
An integer random sequence X is chopped into disjoint t-tuples. Each integer is reduced to
b bits by masking out a selected block. Thus we get a sequence X ′ of words of tb bits each.
The serial test applies the χ2 test to test if the elements of X ′ are uniformly distributed.
Thus the χ2 statistic is

χ
2 =

∑
( N

2tb −hi
)

N
,

where hi is the histogram of the observed values and N is the length of X ′.
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The masking of b bits is necessary to reduce the sample space. If b is too large, an
enormous sample would be required to get reasonable significance. In our tests we have
used (t,b) = (4,2) and (t,b) = (2,4), each of which gives eight-bit blocks.

To generate the pseudo-random number sequence X , we generate a sequence of states
S = [g1,g2, . . .] from a single seed g′0 using the recurrence (g′i,gi) = splitg′i−1. For each
element gi we generate the tuple (gLL,gLR,gRL,gRR) as defined in the previous subsection.
From each of the four generators, we take one random number rX = ext◦nextgX . The
result is a list of integer four-tuples r = (rLL,rLR,rRL,rRR). Juxtaposing the tuples into a
single integer sequence X , we apply the serial test with t = 4 as described in Definition 12.
We call this test the quad-test. A total of 16 tests are run. Each test considers a block of two
adjacent bits, starting at bit no. 1,3,5, . . . ,29 and 30, counting from the least significant bit.
The output range is 31 bits, so the 32nd bit is biased and must be ignored.

Running the quad-test on Haskell’s standard generator, we consistently got a p-value of
0 to four decimal places. Running a second set of tests, considering only two out of four
generators per tuple, the only offending pair was (rLR,rRL). This observation led to the
proofs in the previous subsection.

The flaw in Haskell’s generator is closely tied to the linearity of the maps used by split.
We tried a variation replacing the map s 7→ s± 1 in the split function, by a quadratic
function s 7→ s2, and the resulting S-PRNG passed the tests.

5.6 Statistical Evaluation of Random Jumps

We have evaluated both variations of random jumps defined in (8) and (9) using statistical
testing. Both passed the quad-test described above, but the original version (8) fails the
split sequence test which we describe below.

Starting with some seed g′0, we define the following split sequences:

SA = [g1,g2, . . .], where

{
(gi,g′i) = splitg′i−1, if i is odd

(g′i,gi) = splitg′i−1, if i is even,
(12)

SL = [g1,g2, . . .], where (gi,g′i) = splitg′i−1, (13)

SR = [g1,g2, . . .], where (g′i,gi) = splitg′i−1. (14)

As before, each sequence S of generators gives rise to an integer sequence X = [x1,x2, . . .]

where xi = ext◦nextgi, and this sequence is made subject to the serial test (Definition 12).
For each of the three sequences we run eight tests with (t,b) = (2,4) and 16 sets with

(t,b) = (4,2), using different bit blocks. Additionally, we ran the 16 quad tests, for a test
suite of 88 tests total. The actual test suite used included 135 tests, but the the remaining
47 tests gave no interesting information and we leave them undocumented. The entire test
suite was run four times indepenently, each time with a sample size of n = 25000 tuples
(25000 · t random numbers).

The original definition of random jump split (8) was made subject to the tests as de-
scribed. A number of the tests failed with a p-value of 0 to four decimal places. In the first
run, this happened for the 16 tests with (t,b) = (4,2) on SL. In the second run it happened
to all 24 tests on SA as well as 14 out of 16 tests with (t,b) = (4,2) on SL (the remaining
two tests had p-value < 0.0002). In the last two runs it happened to the 16 tests with
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(t,b) = (4,2) on SA. The third run also had a large number of tests on SL failing with p-
value below 5%. It is clear that the original definition of Random Jumps is unsound when
applied to the Portable Combined Generator.

Changing the split function to Equation (9), the generator passes all of the tests that we
have proposed. Even so, there is little reason to trust this S-PRNG. The construction is only
an ad hoc variation of the original random jump construction which failed, and it may very
well fail similar tests on other branches in the Monte Carlo tree.

6 Conclusion

We have reviewed and evaluated splittable pseudo-random generators, and we have found
statistical bias in most of them. As a main result, we have identified linear dependencies
in the Monte Carlo trees generated by linear congruential generators, including both the
Lehmer trees and the PRNG implemented in Haskell’s standard library.

There is one S-PRNG construction where we have not been able to find any fault,
namely the hash based generator of Claessen and Pałka (2013a). In particular, the generator
was subject to the test methodology described in Sections 5.5–5.6, passing all tests. The
foundation on cryptographic theory justifies some confidence in the construction. Even for
this generator the Birthday Paradox should be remembered and one should never use more
than O(

√
n) states from a state space of size n.

Splittable pseudo-random generators are essential for parallelising probabilistic algorithms
in deterministic programs. An application of the hash-bashed S-PRNG to a data-parallel
implementation of genetic algorithms was discussed by Schaathun (2014), a work which
was motivated by a dynamic resource optimisation problem described by Bye and Schaathun
(2014). It has been quite surprising to see how hard it is to find examples of parallel,
probabilistic algorithms in pure functional programming, and as we have pointed out, the
first convincing, publicly available implementation of a suitable S-PRNG came in 2013.

While the hash-based S-PRNG is very convincing, both theoretically and practically, one
should hope to see more thorough, independent evaluations thereof. Conventional wisdom
in computational statistics and Monte Carlo simulation indicate that one PRNG cannot
suit every purpose. Different applications have different priorities, and calling for different
trade-offs between sequence length, distribution, running time, and theoretical guarantees.
Therefore this topic is not exhausted yet.

The S-PRNG construction of Steele et al. (2014) was published after the original sub-
mission of this paper and has therefore been omitted from the study.
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