On the (2,1)-Separating Weight of the Kerdock cannot itself be(2, 1)-separating. However, by shortening the

Code code, we obtain g2mtt — 1,22m+1 g9m _ alm/2]y pinary
code. A lower bound o# for the shortened Kerdock code is a
Tor HellesethFellow, |EEE, simple consequence of the bound above due to Sagalovich [6]
Hans Georg Schaathudember, |EEE, and was explicitly stated for the shortened Kerdock code in

Krasnopeev and Sagalovich [4].

Abstract— Separating codes find applications in many fields
including automata theory and digital fingerprinting. It is known Theo2rem 1[4] Let m be odd. The (2! —1,22m*1, 2m. B
that the Kerdock code of sufficient order is (2,1)- and (2,2)- 2.™/!) shortened binary Kerdock code has (2, 1)-separating
separating, but the separating weight is only known by a lowe weight
bound due to Sagalovich. In this paper we prove that the lower # > max{0,2™ ' — 3. QLm/2J*1}‘
bound on the (2, 1)-separating weight is met with equality. -

Index Terms— Fingerprinting, Kerdock code, linear codes over ~ 1"€ main result in this paper (see Theorem 3) is to prove
Z4, separating systems that this bound ord is always met with equality, and that it
holds for the family of(2™+1 —1,22m+1 2m _2lm™/2]) binary
| INTRODUCTION codes obtained by shortening the Gray map of the Kerdock

i codes overZ, defined for all integersn. For m odd these

In recent years there has been an increasing interestcifyes coincide with the codes in Theorem 1.
problems of digital fingerprinting [2]. When a vendor sells Note that the(2m+1 — 1,22m+1 9m _ 9lm/2]y shortened
copies of some copyrighted work, each copy may be markgdrdock code is a binary three-weight code with weights=
with a unique fingerprint. If illegal copies subsequentlpegr, om _2lm/2] 2m andm, = 2™ + 2™/l Theorem 3 implies
the fingerprint enablgs the vendor to trace them back totigat the shortened binary Kerdock code(3s1)-separating if
legal copy and a guilty buyer. If two or more users colludgnd only if m > 3, in which case the separating weight is
they can compare their copies. Any differing bit must be pagkactly equal tad; — my /2.
of the fingerprint, and these detected bits may be changedsg to prove that the bound @hin Theorem 1 is met with

to produce a hybrid copy. A-collusion-secure fingerprinting equality, it remains only to prove that the code containeehr
code enables the vendor to trace at least one pirate whego@ewordsa; , as,b such thatd(a;,az) = m; andd(ay,b) =

collusion of at most users is guilty. d(az,b) = dy.

Separating codes are used in some constructions of colluye present two proofs of our main result. The first proof
sion secure codes [1], and for certain constructions [@, that we present was suggested to us by an anonymous referee
separating weight is an important parameter. and this proof works directly for the binary Kerdock code

Consider three codewords, az, andb in an (n,M,d) defined for oddm. This proof is presented in Section II.
code, i.e., a code of lengthwith A/ codewords and minimum  The second proof is based on the algebraic description of
Hamming distancel. We say that & coordinate position the codes ovef, that define the binary Kerdock codes via the
separatedai, a;} andb if both a; anda, are different from Gray map. This method can in principle be applied to other
b in this position. A code ig2,1)-separating if any pair of codes with a nice algebraic construction. In Section Ill we
codewords is separated from any other codeword in at least @ scribe the Kerdock codes ové for all integersm and
position. The(2, 1)-separating weight is the greatest numbgjroyide the basic results needed in order to give the algebra
¢ such that any pair of codewords is separated from any oth6of of the main result of Theorem 3.
codeword in at least coordinates.

Thaté > dy — m4/2 holds for any code with minimum 0
distanced; and maximum distancen,, is well known [6],

[4]. Just observe that the number of positidMsseparating;; !N this section we present the proof due to the anony-
anda, from b is given as mous referee, implying the main result for the binary

(2m+1,22(m+1) 9m _ 9lm/2]) Kerdock codes for odah.

. SEPARATING WEIGHT OF THE BINARY KERDOCK CODE

1 1
N > E(d(al,b) + d(az,b) — d(al,ag)) > E(le — ml)
) _ ) ) Theorem 2 Let K be the binary (n,M,d) Kerdock code
where the first bound holds with equality for binary codes. Where n = oM+l pf — 92(m+1) g — VR g0 m > 3

is evident that = d; — m4/2 if and only if there are three is odd. There exist at least one pair ai, 22 of codewords
codewordsay, as, b such thatd(a1,a2) = mq andd(ay,b) =

with minimal weights (n — 4/n)/2 such that their distance
d(az,b):dl. is (n+\/ﬁ)/2

The binary Kerdock code is a nonlinear
(2m+1,22(m+1) 9m _ 9lm/2]) code wherem is odd. Due to
the all-one and all-zero codewords, the binary Kerdock cog

Proof: It is known that the Kerdock code can be
8scribed as a union of the first order Reed-Muller code,
enoted by R, and/2 — 1 cosets of R contained in the
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The authors were supported by the Norwegian Research Canttithe cosets Is also a bent unCt'On: tis known that any suc coset
AURORA program. (except the zero coseR) consists ofn vectors of minimum



weight (n —4/n)/2 and the same number of vectors of weigh&nd 3 are mapped into 00, 01, 11, and 10, respectively. The
(n + +/n)/2. Consider any two such cosets and define tH¢éamming distance between two vectors under the Gray map
subsetsL, and Lg of R such thata + L, and g + Lg are equals their Lee distance. In [3], it was shown that efficient
the subsets of vectors of minimum weight— /n)/2 in the nonlinear codes such as Kerdock, Preparata, etc., cary easil
cosetsa + R and 8 + R respectively, and letr and 8 have be constructed as binary images under the Gray map of linear
minimum weight i.e.0 € L, and0 € Lg. codes ovelZy.

Consider any two cosets+ R and3 + R in the Kerdock  The Galois ringR = GR(4,m) is an extension ofZ, of
code. Then the coset + 5 + R (which does not necessarilydegreem. The ringR is a local ring having a unique maximal
have to be in the Kerdock code) is also known to have ideal M = 2R and the quotient ringR/M is isomorphic to
vectors of minimum weighfn — 1/n)/2 and the same number F>~ whereF,= is a finite field with2™ elements (see [3], [5]
of vectors of weight{n + 1/n)/2. for details).

We will show that there exist two vectots andas in the As a multiplicative group, the se&k* of units of R has the
Kerdock code of minimum weightn — /n) /2 such that their following structure
distance is(n + /n)/2. If there is no such pair of vectors .~
amonga; € a+ L, anday € 3+ Lg thena; +a, has weight R = Zom 1 x Za % Zzi"' X 2y
(n — 4/n)/2 and henceL, + Lg C Layg. Since|L,| = m times
|Lg|=|La+pl, we have thatl, = Lg = Lo, and therefore |et 3 ¢ R* be a generator for the multiplicative cyclic
L,=L is an additive Subgroup, i.e. f:(m + ].)'dimenSional Subgroup >  Zsm_; contained within R*. Let T =
linear code. {0,1,8,...,82" "2}. It can be shown that every element

Since all vectors in the cosatt L have weigh{n—+/n)/2, » € R can be expressed uniquely as
we can obtain a contradiction by computing the sum of the

weights of the vectors in the coset in two ways, one by z=a+2b, abeT.
computing the sum of the weights of the rows and one QY can be also shown that — B (mod 2) is a primitive

computing the sum of the weights of the columns. Since @lement inFy. The Frobenius map from R to R is defined
vectors in the coset have minimum weight and each nonzgjg

column of L contributes a weigh?2™ to the coset, we obtain: o(z) = a® + 2b°
2"+ (n — v/n)/2 > 2™n, and the trace map fromR to Z, is defined by

wheren, is the number of nonzero columnsin Hencen, < m-1

n — /n. SinceL is contained in the first order Reed-Muller T(z) =) o’(2).

code of minimum distanc@™ it follows by the Griesmer j=

bound thati, > 2™ —1 = n—1 > n—/n, a contradiction. Using the facts thata + 2b)>" = a andT(a) = T(a?), we

can show that for aly, § € 7, we have thaty+6+2+/v6 € T
Because the sum of the Hamming weight@; ) + w(a2)+ and

w(a; + az) < 2n for the vectors selected by the theorem T (7+5 + 2\/%) =T ([y+46]%).

above, there is a position where bathanda, are zero. This

means that codewords,, a; andb = 0 with the required

properties exist in a shortened code of the Kerdock codeeSi

the Kerdock code is invariant under a double transitive grod

such codewords exist for any shortening of the Kerdock coodeeff'ned by

It therefore follows that equality holds in Theorem 1. K ={c(u,a) | u € Z4,a € R}.

Letc(u, a), whereu € Zy,a € R, be a vector inz] indexed
Py the elements of” such thaic(u, a), = u + T'(az) for all
F € T. The Kerdock codeC over Z, of lengthqg = 2™ is

Clearly, has4™*! codewords. In this paper, the coklewill

} ) ] ) be called the Kerdock code ovér, for any m.
Let Z, be the ring of integers modul In this section we  The Lee weight ob € Z, is related to the real part af®

will study codes oveZ, and the Gray map that can be used tg;5 wr (b) = 1 — Re(w®), wherew = v/—1. Hence we have
construct binary codes from codes ovgy. We will describe

a family of (2m+1 — 1,22m+1 9m _ 9lm/2l) pinary codes u T(ax
obtained by(shortening the Gray map of t)he Kerdock codes wg (e(u,a)) =g —Re [“’ > Wl )] ' @)
over Z, defined for all integersn. For m odd these codes . ) o ?ET ) ]
coincides with the codes in Theorem 1. Further, this sectid® find the Lee weight distribution ofC, it suffices to
gives basic results needed in order to give the algebraiofprél€termine the distribution of the exponential sum
of the_ main result in this paper (cf. Theorem 3). N T'(a) = Z T (az) )
A linear code overZ, with block lengthn is an additive
subgroup ofZ7. The Lee weights of the elements O, 1, 2,
3 of Z, are 0, 1, 2, 1, respectively. The Lee weight of Aemma 1 Let ¢ = 2™ where m > 3. Let A; be the number
vectora € Z7 is defined to be the sum of the Lee weightsf codewords of Lee weight 7. The Lee weight distribution of
of its components. The Gray map is defined such that 0, 1,R,is as follows:

I1l. KERDOCK CODES OVERZy

z€T



(i) If m isodd, then Zy4. From now on, the codeword is assumed to imply the
codeworde(0, a).

1 for ¢ =0 or 2g, .
A= 2(g—1) forz'— i\/q% Leta = 1+ 26, andb = v + 242, be two vectors in the
L 4q E 5 for v-a e Kerdock code with minimum Lee weight. The difference b
1 LT is given as

(i) If m iseven, then
a—b:1—7+2(51+62)

1 for ¢ = 0 or 2q,
Ai: q(q_l) fOI’i:qﬂ:\/_, :1+7+2W+2(61+62+7+ﬁ).
2¢° +2¢—2 fori=q.

If we let @ andb correspond to a valuggiving a minimum
] ] o Lee weightd; and a — b to a valuet giving maximum
Proof: If m is odd, the Lee weight distribution can b&yeight Leem, (less than2m+1), it follows as an important
found in [3]. If m is even, the Lee weight distribution can bgqnsequence of the following lemma that we can find nonzero
determined in a similar way, so we omit the details. B \actorse andd of minimum Lee weightd; such thata — b

For any non-zeros € 7, the codeworde(0,28) is an Nas maximum Lee weight, (less thar2™*1) in the code.

extended binaryn-sequence multiplied by 2 (mod 4), so it
has Lee weighy = 2™. In order to identify the minimum Lee
weight vectors of the forna(0, a), it is necessary to analyzeLemma 4 Suppose m > 7. Then, for any s,t € Z,, there

the exponential suri(a) given in (2). exist 1,82,y € T such that v ¢ {0,1} and
) ]
Lemma 2 Let a = v + 2§ with v,6 € T and v # 0. Then T (61) :T<$) =s
— wT6/M
I(y+20) =w T'(1). and
<(51 +o+y+ \/’7)2>
T =t.
(1+7)?
Lemma 3 Let e be the primitive 8th root of unity, given by ) _
€ = (1 + w)/v/2. Then we have Proof: Consider the three equations
F(l) _ 2m ™ if m is odd, Ey :T(61) -8,
—V2mem if m is even. 8y
E1 =T <—> -8,
Y
2
Combining (1) with Lemma 2 and Lemma 3, we have E,=T <(51 + 9 +7t‘/'7) ) ¢
a closed-form expression for the Lee weight of a Kerdock (L+9)

codeword in terms of the coefficients in its trace expansio\we first selects
1

That is, foru € Z; andy,d € T, we have such thatT'(é;) = s, and theny such that

v ¢ {0,1}. Let N be the number 0b, € T such thatE; =

q — Rew*TG/MD(1)], ~ #0, E, = 0. Then we have
wL (C(ua v+ 26)) =359 v =0, 4 # 0, Z Z wwrBituzEr _ g2 pr
q— Re(qwu)a v=0, 6=0. 02€T u1,u2€Z4

These relations are the key to identify vectors with minimufie want to show thatv > 1. Setting

Lee weight in the Kerdock code. Note that the codeword -

¢(0,7 + 26) has the same Lee weight as the codeword uy By + uy By = B(6,) — suy — tus,
¢(0,1+24/~) for anyy # 0. The codewords of minimum and

maximum values, of the forma(0, 1 + 24), are determined by we have

the values off as given in Table I.

[Table 1 about here.] T( 82 (81 + 62 +7+ﬁ)2>

] B(62) = U1 —5 + us 3

Consider the codewordu, a), whereu € Z4,a € R. The g (1+7)
exponential sum associated witlfu,a) is the exponential (s U1 Us uz (01 + v + 7)
sum I'(a) associated with:(0,a), multiplied by w*. Hence 2 [? + m] + 202 [W]
the effect ofu is to rotateI'(a) by a multiple ofr/2.

We will show that we can select two nonzero codewords, (01 +7v+7)?
¢(0,a) andc(0, b), of minimum Lee weightl; = 2™ — 2lm/2] 2 (14 4)2
in the Kerdock code ove#,, such that their difference has
the maximum Lee weightn; = 2™ + 2L™/2] (excluding the Since2T (u;ed) = 2u;T(ed) = 2u;T(e26?) = 2T (u;e?62) for
all-2 vector of Lee weigh2™*!) in the Kerdock code over anye € R, we have that




B(62)

where

B, =

By =

(mod 2) can be divided into six pairs. Each pair correspond

to (u1,u2) and its negativ—u1, —us) (mod 4). Since, each
2us (6 2 b 2) > .
=T (6§ [u—; + 1 Uz 5 ] 11+ 7 t‘ﬁ) pair contributes two complex conjugate values to the sum, it
v 1+ (1+9) follows that whenm is odd, the bound2,/g can be improved
(01 + 7+ 7)? to 64/2¢. Hence, for oddn it is sufficient to requirey > 27.
N -
= T(62B, + By), Lemma 4 and the discussion before this lemma implies the
following result.
; Lemma 5 Suppose m > 7. There exists two codewords
I O I (0 +7+7) , ¢(0,a) and ¢(0,b) in the Kerdock code over Z4 of minimum
v (1+9)? (L+7)* Lee weight d; = 2™ — 2lm/2] such that their Lee distance is
SRR Rvalk my = 2m + 2lm/2],
ot LTIV
(1+7)?

Since the Kerdock code ovéd, is invariant under a double

Now we are interested in the cases whétg = 0. If we transitive permutation group we can assume without loss of
write B, in 2-adic expression, that idf, = Do + 2D1, then  generality that the code after the Gray map is shortened in
B, =0 if and only if Do = D1 = 0. SinceDo = B> mod 2, the first position. Our main result is to determine the exact

we have (2,1)-separating weight of the resulting binary code.
v ( tw ) Theorem 3 Let m be any integer > 3. Then the (2™+! —
_ w1t uy” +ugy (mod 2) 1,22m+1 9m_olm/2]y binary code obtained by shortening the
Y2 (1+7)? Gray map of the Kerdock code over Z4 has (2, 1)-separating
_ ur + (w4 u2)y? weight
21+ )2 (mod 2). f = max{0,2m "t — 3. 2lm/2]-1},
So the only possibility forDy = 0 is whenu; = u; = 0 Proof: The theorem says that the codg2s1)-separating
(mod 2). In this case, we get if and only if m > 3, in which case the separating weight is
uy Uz exactly equal tal; — m4 /2. It is easily verified that the code

Therefore, sincar; = 2v; andus = 2v,, for somewv,, vy €
{0, 1}, we can repeat this argument and we obtgis= v, = 0
(mod 2). Hence, we have

Under these conditions we also have that the constant t
By = 0. Let g = 2™, then by grouping; , us into two classes
depending on whether the value Bf is 0 or not, we have

16N

Since B, = 0 only if u; = u2 =0 (mod 4), we can use the

Bz = (mod 4)

is not (2,1)-separating fom = 1 andm = 2. In the case
m = 3 andm = 5 the result has been shown by Krasnopeev
and Sagalovich [4] using a computer search. The cases4
andm = 6 we have settled by a computer search.

It is clear following the remark after Theorem 1 that the
By, =0 iff uy =u2=0 (mod 4). result follows if and only if there are three codewordsas, b
eSUCh thatd(al,az) = mq and d(al,b) = d(az,b) = d;.

80 to prove the theorem, it remains only to prove that such
codewords exist forn > 7.
It follows as a consequence of Lemma 5 above that there

+7
v (1+49)?

= Z Z wurBrtuz Bz are codeworda; = ¢(0, a), as = ¢(0,b) andb = 0 with these
w1, uz€Za b2 ET properties. Since all these codewords are zero in positien

_ Z Z T (63B2+Bo) 0, the Gray map of all these vectors will after shortening in

o the first position, also belong to the shortened binary Kekdo

(u1,u2)=(0,0) 02€T

Z . Z T(62Bat Bo) code and have the required properties. ]
+ (o Sur—tuz wT(02B2+Bo
(u1,u2)#(0,0) 62T IV. ACKNOWLEDGEMENT
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bound on the exponential sum [5, Theorem 1] (or Lemma 2

and Lemma 3 above). Since the inner sum is 0 in the case
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LIST OF TABLES
The values ofT'(§) which give minimum and maximum weight af0, 1 + 24) for the various values ofn.



TABLES

T(9) for weight
m (mod 8) | Minimum | Maximum
0 2 0
1 Oorl 2o0r3
2 3 1
3 lor2 3o0r0
4 0 2
5 2o0r3 Oorl
6 1 3
7 3or0 lor?2
TABLE |

THE VALUES OFT(J) WHICH GIVE MINIMUM AND MAXIMUM WEIGHT OF C(O, 1+ 2(5) FOR THE VARIOUS VALUES OFm.



