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Abstract

This paper presents a software architecture for a collabora-
tive virtual environment (CVE) for simulation and visual-
isation based on the Functional Mock-up Interface (FMI)
for co-simulation and web technologies. FMI has been
chosen in order to have a standardised and independent
interface to models created in different modelling tools.

The user interface has been implemented using web
technologies, which enables a very high degree of flexi-
bility. The Web Graphics Library (WebGL) is used for in-
teractive 3D visualisations, enabling native cross-platform
rendering directly in the browser without the need of
installing any additional plug-ins. Employing the bi-
directional communication capabilities of the WebSocket
protocol, multiple users can interact with the same simu-
lation models simultaneously.

A software prototype has been developed in order to
demonstrate the applicability of the proposed architecture.
As a case study, we have considered virtual prototyping
of marine cranes, to illustrate the use on real world prob-
lems.
Keywords: Functional Mock-up Interface, WebGL, Virtual

Prototyping, Web based Simulation

1 Introduction

Virtual prototyping is a hot topic in many industries. The
construction of physical prototypes is costly and time con-
suming, but has traditionally been necessary to be able to
test and evaluate new designs. As computer technology
develops it becomes possible to make an increasing part
of the necessary tests based on simulations. Modelling
and simulation of components has been possible for some
time, and good tools exist. Simulation of complex systems
is harder, and in most cases it still depends on a costly and
time consuming ad hoc integration of components. Vir-
tual prototyping refers to a vision where models, or virtual

prototypes, of complex systems can be developed, tested,
and amended with a trial-and-error approach.

As the standards of the web has matured, a growing
number of applications have been made accessible from a
web browser. The latest version of the HTML standard,
HTML5, has brought along new powerful developer Ap-
plication Programming Interfaces (APIs), previously re-
stricted to desktop applications. WebGL (Marrin, 2011),
has made it possible to utilise the 3D rendering capabili-
ties of the GPU from within the browser, without the use
of plug-ins. Furthermore, the WebSocket standard (Fette
and Melnikov, 2011) allows for low latency bi-directional
communication between browsers and web servers.

FMI (Blochwitz et al., 2012) is an open and tool inde-
pendent standard for model exchange and co-simulation of
dynamic models. FMI is currently supported by 73 tools,
which indicates a major impact on research and industry.
In this architecture, FMI has been chosen in order to have a
standardised and independent interface to simulation mod-
els created in different modelling tools. These FMI com-
pliant models, called Functional Mock-up Units (FMUs),
are distributed on the network and accessed using Remote
Procedure Calls (RPC) in order to ensure scalability as the
number of concurrent simulations increases. Modules that
describes sub-systems (either in the form of FMUs or di-
rectly implemented in Java) can be assembled together in
order to form more complete systems.

The user interface has been implemented using web
technologies, which enables a very high degree of flex-
ibility and low coupling. For instance, modifications to
the underlying architecture can be applied without issu-
ing software updates to clients. Furthermore, users can
view and interact with live simulations just by opening a
browser page. As all computations except rendering are
done on a remote server, even less powerful devices such
as tablets or smart-phones may interact with running sim-
ulations.

This paper is organised as follows. A review of related
research work is given in Section 2. Section 3 outlines
the software architecture for simulation and visualisation
based on the functional mock-up interface and web tech-
nologies, while a case study is presented in Section 4. Fi-
nally, discussion and conclusion is given in Section 5.
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Figure 1. High level software architecture

2 Related work

Component-based simulations is a common topic in the
literature, together with other approaches to modularising
simulations. After the introduction of FMI, several au-
thors have shown how to use it in modular simulations. A
recent example is Neema et al. (2014), who used FMI for
component models which where integrated using High-
Level Architecture (HLA). Their system supports compo-
nent models from a range of different modelling tools, in
addition to FMI support.

Delafossei et al. (2012) discuss the use of simulation at
every stage of the design and development, taking hybrid
vehicles as a sample scenario. They start with a high-level
model of the complete system, using generic components
described by analytic models or lookup tables. When the
components are developed later in the process, detailed
behavioural models can be integrated into the original sys-
tem model.

A comprehensive survey of web-based simulation is
provided by Byrne et al. (2010). They define web-based
simulation as any approach which uses the web browser
to provide a user interface for the simulation. They clas-
sify different web-based simulation systems according to
the role taken by the web browser. The simulation can
be client-side, server-side, or hybrid. The latter runs the
simulator on the server and the visualisation layer on the
client, while the former run both in the web browser or
both on the server, respectively. The web browser can
also take other roles, such as providing access to a model
repository or to documentation.

Several authors have applied WebGL to provide full
3D rendering in web-based simulations. A client-side
approach is taken by McMullen et al. (2012), who im-
plemented simulation of abstract models in JavaScript,
with visualisation in WebGL for simulation. Pang et al.
(2013) took a hybrid approach in a system for interac-
tive e-learning environment for high performance build-
ings (HPB). They used using a single Functional Mock-

up Unit (FMU) as the simulation back-end running on the
server.

Several authors have suggested to run simulations in
a service oriented architecture (SoA). An early example
is zu Eissen and Stein (2006) who proposed a method to
simulate Modelica models as a Web Service. Their work is
limited to non-distributed, single-user simulations. They
used the YANOS simulator for Modelica and wrapped it
in SOAP to provide the web service.

Wang and Zhang (2012) have developed a service-
oriented and web-based framework for virtual prototyp-
ing in a distributed and collaborative environment. They
focus on integration of different modelling tools, using
High-Level Architecture (HLA) as part of the architec-
ture. System-level modelling is explicitly out of scope.
They also give a comprehensive historic overview, which
is worth reading.

Zhang et al. (2010) take a model-driven approach to
system-level modelling, and the development of a modu-
lar simulator. This means that some of the code needed to
realise the simulator can be automatically generated from
abstract models of the complete system. The works of
Zhang et al. (2010) and Wang and Zhang (2012) are not
directly applicable to virtual prototyping. They focus on
the structured development of a simulator in a waterfall-
approach. They do not discuss how domain experts can
tinker with a virtual prototype in a trial and error fashion.

More recently, De Filippo et al. (2014) discuss a modu-
lar architecture for driving simulators. They give a historic
overview of simulation in the automotive industry, dis-
cussing shortcomings of previous generations of simula-
tors. Their own approach is called FDMU and is based on
a Service-Oriented Architecture (SOA). The objective is
similar to that of Distributed Interactive Simulation (DIS)
and High-Level Architecture (HLA), but it is claimed that
SOA gives looser coupling. SysML is adopted for wrapper
design in FDMU. The FDMU set-up includes both a visu-
alisation component and dedicated user interaction hard-
ware.
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Figure 2. Model View Adapter pattern

3 Software architecture

Fig. 1 shows the high level architecture of the presented
software architecture. It is based on the Model-View-
Adapter (MVA) pattern and uses a centralised primary ar-
chitecture (Pečiva, 2008). The MVA pattern is similar to
the more well known Model-View-Controller (MVC) pat-
tern, but differs by arranging the model, view and adapter
linearly without any connections between the view and the
model. This means that the view is completely decoupled
from the model, such that the view and model can only
interact via a mediating controller or adapter as seen in
Fig. 2. As the model is oblivious to it’s presentation, the
view/user interface can be implemented in any language/-
tool without modification of the underlying business logic.
It should be noted that in the implemented MVA pattern,
the model is oblivious to the adapter as well. In stead of
implementing an observer pattern, the adapter reads the
state of the model per request. The adapter is implement-
ing the singleton pattern. In this way, as the views/user
interfaces can only interact with the model through the
adapter, it will know when a major user-initialised change
has occurred. Allowing it to notify other clients if needed.
The adopted MVA pattern is shown in Fig. 3.

Figure 3. Adopted MVA pattern

3.1 Communication

Real-time communication between clients and the server
is handled using the WebSocket protocol, while files are
served using asynchronous JavaScript and XML (Ajax).
The major benefit of utilising WebSockets, apart from the
reduced latency, is the bi-directional communication capa-
bility. Before the introduction of WebSockets in HTML5,
full-duplex transmissions between client and server was
not straightforward. However, some methods for real-
time data exchange based on HTTP has been available us-
ing polling, long-polling and streaming mechanisms. But
these methods involve unnecessary HTTP request and re-
sponse headers, which introduce latency, and the server it-
self cannot initiate a connection using the standard HTTP
model (Loreto et al., 2011).

Google protocol buffers (Varda, 2008) are used to seri-
alise data transmitted between the client and server. Proto-
col buffers have been chosen because of the language and
platform neutral nature, the small overhead and the well
defined message structure. In particular, messages sent us-
ing the protocol buffers are pre-defined inside files with a
.proto extension. Protobuf.js (Wirtz, 2013) has been used
in order to add support for protocol buffers in JavaScript,
while support for C++, Java and Python, as well as some
other languages, are bundled together with the protocol
buffers.

An example protocol message is given in Listing 1. Ac-
tually, this message contains all the information needed to
update the browser 3D visuals as the initial Node is the
top-most node in the scene graph, and each child is also a
Node. The optional geometry is only sent once if present,
and contains the information necessary for rendering.

Listing 1. example .proto message

message Node {

r e q u i r e d i n t 3 2 ID = 1 ;
r e q u i r e d s t r i n g name = 2 ;
r e q u i r e d Vec to r3 w o r l d P o s i t i o n = 3 ;
r e q u i r e d Q u a t e r n i o n w o r l d Q u a t e r n i o n = 4 ;
r e p e a t e d Node c h i l d r e n = 5 ;
o p t i o n a l Geometry geomet ry = 6 ;

}

3.2 Visualisation layer

The visualisation layer consists of a set of HTML5 web
pages handling user input, displaying 3D visuals, 2D plots
and other types of data presented according to users re-
quirements. In order to preserve state when transitioning
between different HTML pages during a user session, Java
Server Pages (JSP) has been utilised, which allows vari-
ables to be serialised into Java beans.

WebGL is used to render the 3D visuals. In particu-
lar, WebGL is a cross-platform Javascript API for ren-
dering 3D graphics inside of an HTML5 <canvas> ele-
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Figure 4. Virtual world rendered using WebGL

ment, without the use of plug-ins. WebGL is based on
OpenGL ES 2.0, and Version 1.0 of the standard was re-
leased in 2011 and is today widely supported in modern
browsers, both desktop and mobile versions. Fig. 4 shows
a virtual world rendered in the browser using WebGL. The
open-source Javascript library three.js (Cabello, 2010) has
been used to simplify WebGL interaction. Three.js sup-
ports a number of common 3D formats such as Wavefront
.OBJ, Standard Tessellation language (.STL) and Collada
(.DAE) to name a few. The 3D models generated by the
server side application are transmitted through the Web-
Socket binary stream, while models available from a re-
mote web server are loaded asynchronously through Ajax
calls. However, due to cross-site HTTP requests being
subject to restrictions for security reasons, a client-side
request made from domain A to load a resource from do-
main B will be denied by web browsers. A simple way
to bypass this restriction is to let domain A pass the re-
quest through a server-side resource, acting as a proxy,
not bound by the same restrictions.

The plotting library, CanvasJS, has been used to sim-
plify the creation of 2D plots, and a web page display-
ing real-time plots from a running simulation is shown in
Fig. 5. Plotting works by having the client poll for updates
at a regular interval. These updates contains the most cur-
rent data at the time of the poll. Caching is done by the
client in order to save bandwidth, and to let the view de-
cide how many data points that should be visible.

3.2.1 Terrain

In some cases, the inclusion of real world terrain data
can help create a more vivid and realistic simulation en-
vironment. Something which is especially true for train-
ing simulators. In this system, such data is specified as
digital elevation models (DEMs). DEMs of the Norwe-
gian mainland was released to the public in 2013 by the
Norwegian Mapping Authority, with a resolution down
to 10x10 meters. Using the Geospatial Data Abstraction
Library (GDAL) (GDAL Development Team, 2015), the
DEM files can be exported to a more lightweight and We-
bGL friendly format.

Figure 5. Real time plots available through the browser

Figure 6. Terrain texture based on DEM data generated by com-
bining hill-shade, hill-slope and color-relief textures

GDAL is also able to produce color-reliefs, hill-shade
and hill-slope textures from the DEM source. These are
combined into a single texture and mapped onto the ter-
rain. An example of such a generated texture is given in
Fig. 6.

3.2.2 Ocean Waves

Ocean waves are created by having the server and any con-
nected clients implement the same wave equation. In this
way, time is the only variable needed to be shared and is
controlled by the server as seen in fig 7. The benefit of this
approach is that views can set the height-map for an arbi-
trary sized mesh without increasing the load on the server.
The server itself only needs to calculate the height-map
around vessels and other floating objects.
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Figure 7. Wave generation principle

3.3 Integration Layer

The integration layer has been written using the Java Plat-
form, Enterprise Edition (EE), which is built on top of the
Java Standard Edition (SE) and provides the means for de-
veloping and running large-scale and scalable network ap-
plications. For instance the WebSocket and Servlet API’s
used to communicate with the web browsers are bundled
with the EE API.

3.3.1 Virtual world

The virtual world, or collaborative virtual environment, is
the simulated world in which the virtual prototypes exists.
Simple objects such as crates etc. can also inhabit this
world in order to increase realism, but are not necessar-
ily important for the simulation in question. All objects in
the same world are stepped forward using the same time
step, such that a simulation may be slowed down or accel-
erated forward depending on the needs. The virtual world
is managed by a scene graph in charge of managing the
parent-child relationships and transformations of all the
nodes in a scene. These nodes are arranged in a tree struc-
ture as shown in Fig. 8. A node can have zero or more chil-
dren, but only one parent. Properties of the nodes include
the local and world transformations along with an optional
3D representation. Dual-quaternions are used to represent
these rigid-body transformations as they have been shown
to be the most efficient and compact form of represent-
ing rotation and translation in a unified way (Kenwright,
2012).

Virtual worlds are generated by uploading configura-
tion files to the server. These are written using the YAML
data serialization format. YAML is similar to JavaScript
Object Notation (JSON), but has additional features such
as comments and anchors, and has been chosen because it
is easy to parse, has a rich feature set and is easy to man-
ually read/edit.

3.3.2 Virtual prototypes

The Virtual prototypes are the objects in the virtual world
that users can interact with, edit, monitor etc. It could be
a crane, winch system, propulsion system etc. In order for
it to be a virtual prototype, one should be able to change

Figure 8. General scene graph layout

some physical property of the object in order to see how
this change would affect it’s performance.

3.3.3 Behaviours

Behaviours alters the state of a virtual prototype over time,
and could encapsulate the functionality of zero or more
FMUs from the component layer. Several behaviours can
be attached to a virtual prototype in order to simulate the
desired functionality.

3.4 Component Layer

Simulation models can be written in a number of differ-
ent domain specific tools. Integration of models across
these tools are not necessary straightforward, and success
depends on the tools having support for the same mecha-
nisms for sharing data.

The integration of simulation models created in var-
ious software tools is achieved through the use of the
FMI standard, by letting tools export their models as
FMUs implementing the co-simulation standard. Basi-
cally, an FMU is a compressed folder consisting of a
combination of compiled C code, describing the model
equations, and XML files specifying the variables used.
The most notable difference between a model-exchange

and co-simulation FMU is that the latter includes its own
solver. The open source library javaFMI (javaFMI Devel-
opment Team, 2013) is used to simplify interaction with
the FMUs. In particular, javaFMI takes care of unzipping,
parsing the attached XML and invoking the pre-complied
C code using Java Native Access (JNA).

Functionality from FMUs in this layer is accessed
trough RPC calls. In this way, available FMUs can be
distributed and computed on some remote resource. Cur-
rently, Remote Method Invocation (RMI), which is built
into the Java API, is used as the RPC mechanism. As
FMUs are invoked remotely, the server hosting them and
the client accessing them are not required to run on the
same platform or share bitness. That is, an RPC request
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Figure 9. Controlling a crane in the virtual world

originating from a 64-bit windows program can take ad-
vantage of an FMU compiled as a 32-bit linux library.

4 Case Study

The presented software architecture has been used to im-
plement a virtual prototyping system prototype for mar-
itime crane design and operation (Yingguang et al., 2015).
The crane kinematics and hydraulic properties are defined
in a YAML document and uploaded to the server. In
this prototype, dynamics has not been considered, but is
planned to be added once a physics engine has been in-
tegrated. Links and joints are placed in the scene graph
hierarchy by parsing the crane kinematics. The hydraulic
properties are inputs to the FMUs making up the hydraulic
system, which consists of a hydraulic motor for the base
and hydraulic cylinders for the jib and boom. These were
modelled using bond graphs in the modelling tool 20-

sim (Weustink et al., 1998). Multiple cranes can be de-
fined in the same document, along with other world ob-
jects. In Fig. 9, two cranes have been defined. The wid-
get visible to the right is used to interact with the cranes.
Changes done to this widget are propagated to the server,
which forwards the requested action to the crane model,
and other users interacting with the same crane will have
their widget updated accordingly. This particular widget
uses Cascade Style Sheet (CSS) to overlay itself on-top of
the WebGL <canvas>, but widgets could also be regular
HTML pages. Additionally, real world terrain, multiple
vessels and simple geometric entities have been included.
Using the approach described in Hatledal et al. (2015), the
workspace of the cranes are calculated and saved as a 3D
model made accessible to the visualisation.

For a more elaborate description of the case study, refer
to Yingguang et al. (2015).

5 Discussion and Conclusion

This paper presents a software architecture for simula-
tion and visualisation based on FMI and web technologies.

FMI allows for the integration of simulation models from
different domains tools, while the use of web technologies
enables a highly flexible way of presenting data. Further-
more, as simulations are carried out server side, no soft-
ware other than a browser is required to interact with them.
As the simulations are centralised on a remote server, mul-
tiple user can interact with the same simulations for col-
laborative purposes.

A key feature of the architecture is that a user does not
have to download the models with which he interacts. A
proprietary behaviour model can just as well run on the
servers of its owner, giving access only to the dynamic and
observable variables. A 3D model would have to be down-
loaded to the client, but needs only to contain the data rel-
evant for visualisation. Thus this is a potential solution to
open for collaboration between secretive partners.

There are a number of immediate challenges. As the
complexity and size of the world to simulate increases,
manually editing the configuration document defining the
virtual world becomes cumbersome and inefficient. To
simplify this process, a visual editor should be imple-
mented.

Our current focus is to integrate the system with a
physics engine, to allow accurate simulation of physical
and mechanical laws. After the initial submission of this
paper we have made significant progress towards inte-
gration of AgX Dynamics from Algoryx Simulation AB,
which is highly suited for high fidelity maritime simula-
tions. This will be discussed in future papers.
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